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Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material
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1Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, BP 47870, F-21078 Dijon Cedex, France
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We numerically investigate the pulse compression mechanism in the infrared spectral range based on the
successive action of nonlinear pulse propagation in a hollow-core fiber followed by linear propagation through
bulk material. We found an excellent agreement of simulated pulse properties with experimental results at 1.8 µm
in the two-optical-cycle regime close to the Fourier limit. In particular, the spectral phase asymmetry attributable
to self-steepening combined with self-phase modulation is a necessary prerequisite for subsequent compensation
by the phase introduced by glass material in the anomalous dispersion regime. The excellent agreement of the
model enabled simulating pressure and wavelength tunability of sub-two cycles in the range from 1.5 to 4 µm
with this cost-efficient and robust approach.
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I. INTRODUCTION

The ability to study molecular dynamics was one motivation
to improve chirped pulse amplification (CPA) [1] in terms of
reduced pulse duration and increased energy since the early
1990s. The key ingredient for reducing the pulse duration
to few optical cycles at high power levels lies in additional
spectral broadening through either (i) nonlinear propagation in
hollow-core-fiber (HCF) [2] and laser-induced (co-)filaments
[3–5] or (ii) ultrabroadband optical parametric amplification
(OPA) [6] and OPCPA [7]. However, the main challenge
remains in controlling the spectral phase of the ultrabroadband
spectrum. Conventional prism or grating configurations have
been demonstrated for pulse compression to few optical cycles.
However, prisms suffer from higher-order distortions and
nonlinear effects at high peak powers, while gratings introduce
losses. Active devices such as spatial light modulators offer full
control over the spectral phase but are elaborate experimentally
[8] and also induce high losses. The established state of the
art for high-power, carrier-envelope phase (CEP), stable, few-
cycle pulse generation consists of chirped mirrors typically
being used subsequently to induce broadening in a HCF.

Based on those achievements at 800 nm wavelength, the
development of attosecond technology in the framework of
high-order harmonic generation (HHG) during the past decade
accessed a previously unexplored time scale down to currently
80 as [9]. Because the extension of the XUV spectrum scales
as Iλ2 [10,11], reliable sources delivering high intensities
I at longer wavelengths λ of the driving laser are required
to generate shorter attosecond pulses. The present article
numerically investigates the mechanism of a cost-efficient
approach for compression of intense IR few-cycle pulses
that has been recently demonstrated experimentally [12]. This
technique is based on spectral broadening in an argon-filled
HCF followed by compression using anomalous dispersion
of fused silica (FS) which introduces negative group delay
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dispersion (GDD) in this IR spectral range. The motivation of
the present numerical study is to explain why the compression
is not limited by third-order dispersion (TOD), which is
positive for all materials. By the help of one-dimensional
propagation simulations, we identified the exact compression
mechanism. The action in argon of the Kerr effect up to the 10th
order combined with dispersion and self-steepening generates
a spectral asymmetry whose phase is adequately opposed to the
one subsequently introduced by linear anomalous propagation
through FS. Note that this technique differs from [13], where
the propagation inside the output window has to be nonlinear
to compress the pulse after the propagation cell.

II. EXPERIMENTAL AND NUMERICAL METHODS

The experimental setup employed to demonstrate the new
compression concept [12] is depicted in Fig. 1. It shows
the IR source which is a fluorescence-seeded, high-energy
OPA (HE-TOPAS, Light Conversion) pumped by 7-mJ, 40-fs
pulses from a Ti:Sa CPA. The OPA Idler wavelength is
tuned to 1.83 µm providing a pulse duration of 73 fs and
0.93 mJ of pulse energy. The IR laser beam is coupled to
a HCF (400 µm in diameter, 1.4 bar argon pressure) using
a f = 1-m plano-convex lens. Lens and cell windows are
made of CaF2 to introduce minimal dispersion to the OPA
pulses. Due to Fresnel losses on the uncoated glass surfaces,
approximately 0.82 mJ is coupled into the fiber. The pure fiber
transmission is estimated to be 65% and the output beam is
collimated using an R = 2-m concave silver mirror. Pulses
are then recompressed by a single pass through a 3-mm FS
glass plate. Their characterization is carried out with a home-
built second-harmonic-generation–frequency-resolved optical
gating (SHG-FROG) specially designed for few-cycle pulse
measurement [14]. The experimental data appear as red circles
in Fig. 2 as a reference for the numerical simulations (solid blue
curve). Figure 2(a) shows the broadened spectra after the HCF
with its corresponding spectral phase before compensation by
the FS plate in (c). On the other hand, the spectral phase
in (d) includes the contribution of nonlinear propagation
in the fiber plus the linear propagation through FS in the
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BÉJOT, SCHMIDT, KASPARIAN, WOLF, AND LEGARÉ PHYSICAL REVIEW A 81, 063828 (2010)
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0.8 µm

CaF2CaF2

FS dispersion free

SHG-FROG
400 µJ

11.5 fs@1.83µm

FIG. 1. Experimental setup. Idler pulses from a high-energy OPA
are propagated in a hollow-core fiber filled with 1.4 bar argon. The
broadband pulses are subsequently compressed by linear propagation
through a fused silica (FS) plate of 3 mm thickness.

anomalous dispersion regime. Experimentally, this flat phase
is determined by varying the glass thickness by steps of 0.5 mm
and small angular tilts, which lead to the generation of 11.5-fs
pulses displayed in Fig. 2(b). This excellent compression to
only 1.14 times the FL (10.1 fs) is surprising even though the
GDD of FS is negative in the anomalous dispersion regime.
As discussed in [12], the TOD, which is positive for all gases,
would be expected to broaden a FL pulse to almost 15 fs (1.5
times the FL) after passing the FS and CaF2 if it was the only
process in play.

To bring insight into the compression mechanism, we
precisely modeled the nonlinear propagation in the HCF, as
well as the linear propagation through the glass, according
to the experimental conditions. Let us consider a linearly
polarized incident electric field E = Re e{ε(z,t) exp [i(k0z −
ω0t)]} at wavelength λ0 = 1.83 µm traveling in a HCF
filled with argon along the propagation axis z. k0 = 2πn0/λ0

and ω0 = 2πc/λ0 are the wave number and the frequency
of the carrier wave, respectively. The refractive index n

is evaluated according to the Sellmeier equation of argon
at 1 bar [15] and its pressure dependence is given by
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FIG. 2. (Color online) Comparison between experimental (red
circles) and theoretical (solid blue line) results. (a) Power spectrum
for propagation in argon at pressure of 1.4 bar, (c) spectral phase
of the pulse before and (d) after compensation with 3-mm FS. The
temporal intensity profile of the compressed pulse is shown in (b).

TABLE I. Nonlinear indexes of argon at 1.83 µm used in the
model (p accounts for the relative gas pressure: p = P

1 bar ). α accounts
for the fiber optical losses.

n2 n4 n6 n8 n10 α

10−24 10−42 10−58 10−75 10−94

m2 W−1 m4 W−2 m6 W−3 m8 W−4 m10 W−5 m−1

9.73p −3.55p 3.78p −1.59p 8.10p 0.43p

n(p) =
√

1 + p[n(p = 1)2 − 1], where p = P/1 bar ac-
counts for the relative pressure. The scalar envelope ε(r,t,z)
is assumed to be slowly varying in time and along z. In
the frequency domain, it therefore evolves according to the
nonlinear Schrödinger equation (NLSE) [16],

∂z̃ε = D̃ε̃ + ik0 ˜T �nε − α̃

2
ε̃, (1)

where ε̃ is the Fourier transform of ε. The terms on the
right-hand side of Eq. (1) account for dispersion [D̃(ω) =
k(ω) − k0 − k1 (ω − ω0)], self-steepening (T = 1 + iτshock∂t ,
where τshock � 1/ω0), instantaneous Kerr effects (�n =∑5

m=1 n2m|ε|2m includes the contribution of higher nonlinear
indexes up to n10), and optical losses α. The n2m coefficients
are related to χ (2m+1) susceptibilities and have been reported
in a recent article [17] at 800 nm. We then extrapolated these
indexes at 1.83 µm by using generalized Miller formulas [18],
providing the spectral dependence of the n2m coefficients
from the knowledge of the linear dispersion. The calculated
nonlinear refractive indexes used in this article are summarized
in Table I. Losses α have been estimated from the experimental
measurements described in [12]. Equation (1) is valid even for
subcycle pulses [19]. Finally, we numerically checked that
ionization does not play a role in the process. According to
PPT theory, the plasma density for the considered intensities
is lower than 1011 cm−3, inducing a refractive index change
four orders lower than the Kerr-induced one.

The input electric field envelope is modeled by a Gaussian
profile as

ε(t,0) =
√

2Pin

πσ 2
r

exp

(
− t2

σ 2
t

)
, (2)

where Pin denotes for the initial peak power, σr is the intensity
quadratic radius, and σt = �tFWHM/

√
2 ln(2) (�tFWHM is the

full width at half maximum of temporal intensity). P in is
then calculated as Pin =

√
2
π

Ein
σt

, Ein being the pulse energy.
The initial conditions are chosen to match the experimental
parameters of [12], as summarized in Table II.

Equation (1) is solved with a split-step Fourier algorithm
for 1 m fiber length. At each propagation step, the dispersion
terms are computed in the frequency domain, whereas both
the nonlinear contributions and the self-steepening are treated

TABLE II. Initial conditions used in the model, corresponding to
the experiments driven in [12].

Ein (mJ) �tFWHM (fs) σr (µm) P in (GW)

0.82 73 210 10.5
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in the time domain. The self-steepening is solved by using a
second-order Runge-Kutta procedure. Moreover, we ensured
that increasing the temporal resolution does not change our
numerical results.

In order to reproduce experimental conditions, we then
apply the spectral phase function induced by both the 1-mm
CaF2 output window and the FS plates with different thick-
nesses. This function is calculated according to the Sellmeier
equations giving the spectral dependence of the CaF2 and FS
refractive indexes [20,21]. In addition, we checked experi-
mentally that no spectral broadening occurs when the fiber is
empty, that is, the propagation within the CaF2 plates remains
linear.

III. RESULTS AND DISCUSSION

Figure 2 compares the experimental and numerical results
at a glance. It displays the broadened power spectrum after
nonlinear propagation (a), the corresponding spectral phase
before (c) and after (d) compression with 3 mm FS. Measured
and simulated temporal intensities after compression are
shown in (b). The crucial task of the numerical work was to
determine the origin for the asymmetry of (i) the spectral shape
in (a) and (ii) the phase which is then efficiently compensated
by glass material in the anomalous dispersion regime shown in
(d). The excellent match for nonlinear propagation according
to the full model given by Eq. (1) and subsequent compression
with bulk material revealed that SPM, self-steepening, and
higher-order Kerr terms during propagation in the fiber are the
three relevant nonlinear effects for describing the experimental
observations. The aim of the current section is to discuss their
respective contributions to the final compression with a simple
FS plate. We stress the fact that simulations match exactly
experimental conditions. The low peak power of 10.5 GW,
which is less than one-third the critical power for self-focusing
in argon (≈37 GW at 1.4 bar), prevents spatiotemporal pulse
collapse and thus fully justifies the 1D + 1 modeling.

A. Pulse compression to few optical cycles

Before having a closer look at the details of the nonlinear
propagation, we numerically describe the compression by
linear propagation through a bulk material in the anomalous
dispersion regime. Due to self-steepening, the asymmetric
spectral shape of Fig. 2(a) is accompanied by an asymmetric
spectral phase. This uncompensated phase after the fiber
assembly but before the FS plate is shown in Fig. 3(a) as
a red line. In the temporal domain it causes the trailing
edge to be more abrupt than the leading one, producing a
strong asymmetry in the temporal intensity profile plotted in
Fig. 3(b). Its FWHM pulse duration is about 75 fs after the
CaF2 window, close to the 68 fs measured experimentally but
far longer than the FL of 11.3 fs. Obviously, the output spectral
phase is predominantly positively chirped, as expected from
SPM-induced broadening. Pure SPM induces a spectral phase
that is typically approximated by a quadratic function and
therefore can be compensated because the GDD of both FS and
CaF2 is negative in the anomalous dispersion regime. Thus, a
pulse which has experienced Kerr-induced spectral broadening
can be temporally compressed by travel through an adequate
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FIG. 3. (Color online) Pulse compression for the spectrum of
Fig. 2 by adding different amounts of FS. The color coding for the
spectral phases in (a) corresponds to the temporal intensities in (b).
Comparing the green with the black dashed plot demonstrates the
effect of uncompensated TOD components.

FS plate, as depicted in Fig. 3. The figure illustrates the effect
of different glass thicknesses on the spectral phase and corre-
sponding time profile whereby the complete phase introduced
by FS is calculated according to the Sellmeier equation. The
best compression is obtained using a 2.77-mm FS plate and
leads to a pulse duration of 10.9 fs, which corresponds to about
1.8 optical cycles at 1.83 µm. Moreover, we calculated that
using a 3-mm FS plate leads to a pulse duration of 11.1 fs. The
agreement is excellent, even quantitatively, since the shortest
experimentally measured duration was 11.5 fs along with a
FL of 10.1 fs. Moreover, the contrast between the main pulse
and satellite pulses remains relatively high (about 11), in both
experiment and simulation. However, this situation worsens
if only the GDD is compensated for. To demonstrate this, we
calculated compression taking into account only the negative
GDD of 3-mm FS instead of taking the full Sellmeier formula
into account (short-dashed line in Fig. 3). Apparently, the
compression cannot reach the FL mainly because of remaining
higher-order dispersion, which is not fully compensated by
FS, as depicted in Fig. 3(a). That means if the negative TOD
component after nonlinear propagation is not compensated by
the bulk material, the pulse duration increases to 13.5 fs.

B. Mechanism study: Respective contributions of the
processes in play

Starting from the initial conditions summarized in Table II
the nonlinear propagation was simulated investigating differ-
ent nonlinear effects. As expected, the third-order Kerr term
(n2 in Table I), typically referred to as SPM, is the driving
force for spectral broadening [16]. After 1 m of propagation
the broadened spectrum symmetrically spans over 1 µm (from
1.3 to 2.3 µm), as can be seen in Fig. 4(a). Even though
spectral bandwidth and FL pulse durations are comparable
with those of the experiment, the spectral shape and phase
are not adequately reproduced (data not shown). On the other
hand, the full model corresponding to the solid line in Fig. 2
including self-steepening and higher-order Kerr terms exhibits
different propagation dynamics, as illustrated in Fig. 4(b), and
yields remarkable agreement with the experiment result.

To track the contribution of different nonlinear effects, we
successively introduced them in the numerical model and
compare the corresponding outcomes. Table III summarizes
the characteristic lengths Lx of all processes taken into
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FIG. 4. (Color online) Spectral evolution as a function of
propagation distance for the simple case considering only n2 in
(a) and for the full model in (b). The latter clearly resembles an
asymmetry because of self-steepening, which tends to promote the
higher-frequency region.

account. As expected, the main process driving the pulse
propagation (i.e., the process with the shortest characteristic
length) is the total Kerr effect, whereas the gas dispersion
remains negligible. As shown in [22], even if the first order
remains most important during the propagation, it appears
that the higher-order Kerr contributions have a non-negligible
effect, leading to a refractive index saturation at an intensity
of 19 TW cm−2 and even a negative nonlinear refractive index
for intensities higher than 27 TW cm−2.

Moreover, as depicted in Table III, self-steepening is not
the main process driving the pulse propagation since its
characteristic length Lsteepening is about 50 times longer than
those of the Kerr effect. In any case, since Lsteepening is
comparable with the fiber length, it cannot be neglected. In
that section, we investigate how the steepening modifies the
final result, and in particular the compression.

As mentioned earlier, the simple case of pure SPM, which
only takes into account the first-order Kerr term, is not
appropriate for explaining the results of Fig. 2. To find the
nonlinear pulse-shaping mechanism that allows for subsequent
compression with bulk material, we investigate the effect of
the following three models:

(i) Kerr model: Includes higher-order Kerr effects but
without self-steepening (green dashed-dotted line in Fig. 5);

(ii) Reduced model: Includes only the third-order Kerr
effect and self-steepening (dashed blue line in Fig. 5);

(iii) Full model: Includes higher-order (up to 11th) Kerr
terms and self-steepening (red solid line in Fig. 5).

TABLE III. Characteristic lengths of the different processes
taking place during the propagation.

Nonlinear effect Characteristic length Distance (m)

Kerr (3rd order) |c/(ω0n2|ε|2)| 0.136

Kerr (5th order) |c/(ω0n4|ε|4)| 2.38

Kerr (7rd order) |c/(ω0n6|ε|6)| 0.142
Kerr (9th order) |c/(ω0n8|ε|8)| 0.217

Kerr (11th order) |c/(ω0n10|ε|10)| 2.7

Kerr (full) |c/(ω0
∑5

m=1 n2m|ε|2m)| 0.112

Self-steepening |cσt/(
∑5

m=1 n2m|ε|2m)| 5

Dispersion |σ 2
t /k(2)| 156

Just n2 and steepeningFull model Full model without steepening
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FIG. 5. (Color online) Comparison of the three numerical models
with experimental measurements. (a,b) Time profile of (a) the
uncompressed and (b) the compressed pulses. (c) Broadened power
spectrum and (d) its associated phase when the pulse is compressed.

Above all, one can see that using the pure Kerr model is not
sufficient for accurately describing the output spectral shape
or its phase. In particular, it is obvious from Fig. 5(d) that the
phase in the blue part of the spectrum strongly deviates from
the experiment. This also reflects as a longer pulse duration of
12.9 fs and a reduced contrast ratio between main and satellite
pulses.

Accounting for self-steepening is the key advance of
the reduced model (blue line), which enables modeling an
asymmetric spectral shape and phase being much closer to the
experimental one than the the Kerr model. However, small dis-
crepancies of the spectral peak positions in combination with
additional phase modulations around the center wavelength
lead to an enhanced postpulse appearing at shorter delay than
that seen in the experiment.

For the considered experimental conditions, the full model
describes the broadening process to a much higher degree of
accurateness, as is evident when comparing the result with
experimental data. The spectral shape, both compressed and
uncompressed phase, as well as the temporal intensity, match
perfectly except for a small deviation of the blue spectral peak
in the 1400- to 1700-nm spectral range. The relative peak
height and the cutoff on the blue side are reduced. The latter
might explain a slightly longer FL of 10.8 fs in the simulation
compared to the 10.1 fs in the experiment. However, the phase
in the same region agrees very well and so does the temporal
appearance of main and satellite pulses.

Residual discrepancies could originate from the approx-
imation in the steepening term τshock � 1

ω0
. In particular,

it has been demonstrated that for quite a broad spectrum
τshock has to be corrected as τshock = 1

ω0
− ∂ ln[Aeff (ω)]

∂ω
|ω0 [23],

where Aeff(ω) is the effective area. This correction induces a
change in the spectrum asymmetry and could indeed explain
the difference between experiments and numerical results in
Fig. 5. Moreover, spatiotemporal couplings which intrinsically
cannot be taken into account in 1D simulations or excitation
of higher-order transverse modes cannot be totally ruled out
for explaining these discrepancies.
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FIG. 6. (Color online) Pressure dependence of (a) minimal pulse
duration achievable by compression with optimized FS thickness in
each case and (b) ratio between main and satellite pulse intensities.

However, this correction does not affect the bottom line of
the numerical investigations. Our results prove that neglecting
self-steepening leads to underestimating the compression
efficiency (the best compression gives 12.9 fs, that is, 2.1
cycles) and the contrast between the main and the satellite
pulses (about 5), indicating that self-steepening induces an
opposite contribution to the positive TOD of the FS plate.
Moreover, as in [22], it appears that the higher-order Kerr
terms have to be included in order to quantitatively reproduce
experiments.

C. Parameters dependence

Enforced by the quantitative agreement of our full model,
we performed a parameter study in order to find the optimal
conditions to generate single-cycle IR pulses with a clean
temporal shape (i.e., without any post- or prepulses). In
that regard, we investigate how the compression behaves as
functions of both wavelength and argon pressure. Adjusting
the pressure is a very handy method for controlling the
spectral broadening, simply because n2 is proportional to
the pressure. Indeed, a higher pressure is expected to broaden
the spectrum even more, leading in turn to shorter compressed
pulses, provided an adequate FS plate can compensate for
potentially more complex spectral phases induced by both
SPM and self-steepening as the pulse spectrum gets broader
and broader. In addition, when aiming for even shorter
XUV attosecond pulses, few-cycle driving fields in the IR
region are strongly desirable simply because the extension of
the XUV spectrum is proportional to the kinetic energy of
the accelerated electron scaling as Iλ2. In that framework,
we have extended our analysis to longer wavelengths, and
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we discuss the efficiency of the method to generate single-cycle
pulses in the 1.4- to 4-µm spectral region.

1. Pressure dependence at 1.83 µm

We first performed calculations as a function of pressure
according to the experimental conditions (i.e., setting the
other parameters like in the experimental conditions being
discussed in the first section). As depicted in Fig. 6(a), a
higher pressure leads to a shorter main pulse, however, at
the cost of the growth of satellite pulses in the trailing edge of
the pulse [see Fig. 6(b)]. For instance, the best compression
with a FS plate at a pressure of 2.6 bar is about 7.5 fs, which
is less than 1.25 cycles. However, as depicted in Fig. 7, the
nonlinear induced spectral phase cannot be fully compensated
by the FS plate, causing the birth of several satellite pulses.
Moreover, increasing the pressure above 2.6 bar enhances
those satellite pulses without reducing the main pulse duration.
In other words, a trade-off between the pulse duration and
contrast of main and satellite pulses has to be accepted due to
uncompensated higher-order dispersion.

2. Wavelength dependence at 1.4 bar pressure

In this section, we describe how the compression behaves as
the pulse central wavelength is varied for all other parameters,
keeping the same initial conditions of the first section.
Figure 8(a) displays the pulse duration as a function of the pulse
central wavelength and shows the scalability for generating
sub-two-cycle pulses with this very simple compression
technique at least from 1.7 to 4 µm. Nevertheless, as depicted
in Fig. 8, the compression ability below 1.7 µm diminishes,
mainly because the zero second-order dispersion wavelength
lies at around 1.3 µm. On the contrary, the ratio k2/k3 of FS
being higher at longer wavelengths, the propagation through
the FS plate leads in turn to a better compression at longer
central wavelengths. However, since the nonlinear refractive
index n2 decreases as the wavelength increases and since the
same B integral [B = n2

∫ L

0 I (z) dz] has to be accumulated
to obtain an equivalent spectral broadening, it appears that the
compression at longer wavelengths is limited at this pressure
mainly because of the limited spectral broadening.

IV. CONCLUSION

In this article, we have identified the mechanisms allowing
for pulse compression of IR pulses in a FS plate after
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spectral broadening in an argon-filled HCF. We have described
numerically a technique for generating tunable sub-two-
cycle pulses in the range from 1.5 to 4 µm, which have
been also demonstrated experimentally at 1.83 µm center
wavelength. In particular, the comparison between experiment
and simulations revealed self-steepening as a key process,
as well as a significant contribution from higher-order Kerr
terms. Compression is simply achieved by propagating the
pulse through a FS plate, which exhibits negative GDD in the
IR range, after nonlinear propagation in a standard HCF setup.
Our numerical simulations show that self-steepening allows a
better compression than expected due to SPM only because
steepening induces a negative third-order component which
partially compensates the positive TOD of FS. Moreover, we
have identified the processes involved in the spectral broad-
ening process. Thus, it appears that higher-order Kerr terms
have an important impact to adequately fit the experimental
results. Moreover, the excellent quantitative agreement of our
model with respect to the experiments driven at 1.83 µm
allowed us to discuss the optimal parameters for generating

sub-two-cycle pulses in the 1.5- to 4-µm range. Such a tunable,
few-cycle IR source will be useful in the scope of attosecond
pulse generation experiments, where the cutoff frequency
of the XUV radiations quadratically depends on the pump
wavelength.
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