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The filamentation of ultrashort pulses in air is investigated theoretically and experimentally. From the
theoretical point of view, beam propagation is shown to be driven by the interplay between random nucleation
of small-scale cells and relaxation to long waveguides. After a transient stage along which they vary in location
and in amplitude, filaments triggered by an isotropic noise are confined into distinct clusters, called “optical
pillars,” whose evolution can be approximated by an averaged-in-time two-dimensional(2D) model derived
from the standard propagation equations for ultrashort pulses. Results from this model are compared with
space- and time-resolved numerical simulations. From the experimental point of view, similar clusters of
filaments emerge from the defects of initial beam profiles delivered by the Teramobile laser facility. Qualitative
features in the evolution of the filament patterns are reproduced by the 2D reduced model.
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I. INTRODUCTION

First experiments on the long-range propagation of fem-
tosecond(fs) laser pulses were performed in the mid-1990s
[1–3]. In these experiments, infrared laser pulses with dura-
tion of about 100 fs produced narrow filaments of several
meters, along which more than 10% of the energy was ob-
served to be localized in the near-axis area. This phenom-
enon is attributed to the early self-focusing of laser radiation,
which originates from the Kerr response of air and leads to
an increase of light intensity. This growth is then saturated
by the defocusing action of the electron plasma created by
photoionization of air molecules. As a result, the maximum
light intensity in the filament does not exceed 1014 W/cm2

for infrared pulses. If the pulse power is less than a few
critical powers for self-focusingsPcrd in air [1,2], only one
filament is created. At higher powers, two or more filaments
can be produced[3–7]. Knowing that novel optical sources
nowadays access the terawatt(TW) range, it is thus timely to
understand the dynamics of fs light pulses when they decay
into multiple small-scale structures, in view of improving,
e.g., atmospheric remote sensing techniques[8].

Filaments originate from the modulational instability(MI )
triggered by the nonlinear response of air. Applied to an op-
tical background, MI breaks up high-power beams into
small-scale cells that each convey a power close toPfil
.p2Pcr/4 [9–11]. These cells are then amplified through the
collapse dynamics and relax their inner power to the critical
one, until they reach the ionization threshold near which they
give rise to various transverse patterns and undergo strong
temporal distortions[11,12]. At relatively low energies

sø5 mJd, a beam can decompose only into a couple of small
spots that fuse as they attain a full ionization regime[5]. This
fusion mechanism reduces the final number of output fila-
ments along the propagation axis. For broader beams con-
veying much higher energies, another scenario[13], elabo-
rated from three-dimensional(3D) numerical simulations of
a central portion of the pulse over a dozen of meters, empha-
sizes a propagation sustained by random nucleation of small-
scale filaments: Collapsing cells resulting from MI are regu-
larized via plasma defocusing with very weak losses from
multiphoton absorption(MPA). Recurrent collapse events,
which are fed by the energy reservoir created from anterior
defocused filaments, then form an “optically turbulent light
guide,” which drives the pulse dynamics. This latter scenario
contrasts with the simple picture of light guides that stay
robust over long distances.

The goal of this work is to clear up this apparent contro-
versy by investigating pulse filamentation up to the Rayleigh
range for high input powerss10, Pin /Pcr,1000d. To ad-
dress this issue, we first briefly recall the fundamental equa-
tions governing the atmospheric propagation of ultrashort
pulses. Because the numerical integration of these equations
over long distances in fulls3D+1d-dimensional geometry is
mostly limited by the available computer capacities, we pro-
pose as2D+1d-dimensional model derived by averaging all
time dependencies in the laser envelope and the plasma re-
sponse. This reduced model[7] admits solitonlike states that
describe short-range “randomly-nucleated” filaments. We
show that these structures confine themselves into a limited
number of long-range coherent objects, termed as “optical
pillars.” Besides transient stages where turbulent cells recur,
these new structures around which filaments self-organize
drive the pulse dynamics. This property is confirmed by the
direct solving of thes3D+1d-dimensional equations applied*Electronic address: stefan@pinet.uni-jena.de
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to mm-waisted ultrashort pulses. Second, we compare ex-
periments with numerical simulations in order to understand
how filaments are produced and how they impact on the
long-distance propagation of TW pulses with peak powers as
high as 1000 timesPcr. To do so, three series of experiments
involving the Teramobile facility[14] are performed in par-
allel geometry, with beam powers varying between 120 and
1000Pcr. Each series of experiments is numerically simu-
lated by means of the averaged-in-time approach. This model
is found to reproduce the qualitative features of the experi-
mental patterns. High-intensity defects in the spatial distribu-
tion of the input beam generate “optical pillars” persisting
over several tens of meters through the propagation. By “op-
tical pillars” we mean discrete light spots capable of amal-
gamating short-living solitonlike cells that self-attract around
specific points in the diffraction plane. The resulting struc-
ture then sustains a long-range propagation, while it can still
continue to excite short-range cells in its vicinity. Optical
pillars indeed evacuate power as they collapse, so that ran-
domly nucleated filaments may recur more and more along
the optical path, in accordance with the scenario of[13]. The
major difference between the concept of “optical pillars” and
both the “optically-turbulent light guide”[13] and “self-
waveguiding”[1] models lies in the following: The possibil-
ity of guiding the beam through a small number of quasicon-
tinuous long-range clusters created from its most intense
regions. A last experiment realized in converging geometry
validates this concept: A focused beam is observed to decay
into several tens of small-scale cells before the focal point of
the beam. The linear lensing shrinks all filaments at the focal
point, after which only three quasicontinuous channels of
light keeping the same average direction propagates over al-
most 10 m.

The paper is organized as follows. In Sec. II we briefly
recall the model equations. Section III is devoted to the deri-
vation of the reduceds2D+1d-dimensional model and to the
analysis of its solitonlike solutions. Emphasis is put on soli-
ton interactions in the conservative regime and on the action
of MPA which damps the soliton profiles and decreases their
power over a generic distance. In spite of natural limitations
owing to the averaging in time, the spatial dynamics de-
scribed by this model is found to be qualitatively close to
that provided by the originals3D+1d-dimensional equations.
Direct comparisons between both models are commented on
in Sec. IV, where the limits of applicability for the 2D reduc-
tion are thoroughly discussed. Differences between an
averaged-in-time filament compared with itss3D+1d coun-
terpart developing a two-peaked temporal profile[15,16] are
discussed. Section V concerns experimental observations of
filaments evolving from terawatt pulses delivered by the
Teramobile facility. By means of classical charge coupled
device (CCD) imaging, the filamentation figures are col-
lected over regular distances upon the propagation axis. They
emphasize the early amplification of the initial beam defects.
These defects then serve as central “hot” spots around which
short-scale light cells arise and rapidly recur over 1 m-range
distances. The local zones formed by a central spot sur-
rounded by short-living cells are able to propagate much
farther and meet the definition of an “optical pillar” given
above. The qualitative events developed in the experimental

patterns are shown to agree with numerical computations
realized from the 2D reduced model, using a digitized file of
the input beam profile. Different input powers comprised be-
tween 100 and 1000 timesPcr are investigated for collimated
beams. A special experiment involving a focused beam
achieves to confirm both the validity of the 2D model and the
existence of “optical pillars.”

II. THE PHYSICAL MODEL

The equations describing the propagation of ultrashort
pulses with intensities limited to 1014 W/cm2 at infrared
wavelengths are nowadays classical. As already justified in
anterior references[5,7,12,13,15–17], the fundamental
model consists of as3D+1d-dimensional extended nonlinear
Schrödinger(NLS) equation for the electric field envelope
Esx,y,z,td moving with the group velocityvg, coupled to a
Drude model for the local plasma densityrsx,y,z,td:
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These equations apply to fs pulses moving in their group-
velocity framest→ t−z/vgd, with the central wave number
k0=2p /l0. The critical power for self-focusing is defined by
Pcr=l0

2/2pn2 and in air it takes the valuePcr<3.3 GW for
the laser wavelengthl0=800 nm and Kerr refraction index
n2=3.2310−19 cm2/W. In Eq. (1a), z is the longitudinal dis-
tance of propagation while¹'

2 =]x
2+]y

2 accounts for optical
diffraction in thesx,yd plane. The second-order temporal de-
rivative refers to normal group-velocity dispersion(GVD)
with the coefficientk9=0.2 fs2/cm. The complete Kerr re-
sponse of air, defined by Eq.(1b), is composed of an instan-
taneous contribution and a delayed part in ratiou, with a
relaxation time tK=70 fs [5,17]. The quantity rc=1.8
31021 cm−3 is the critical plasma density beyond which the
beam no longer propagates. Power dissipation is assured by
multiphoton absorption(MPA) with coefficientbsK=8d=4.25
310−98 cm13/W7 [15,17]. In Eq. (1c), plasma defocusing is
mainly induced by ionization of oxygen molecules with gap
potential Ui =12.1 eV, contributing to 20% of the neutral
densityrat=2.731019 cm−3 [17], so that the effective den-
sity of neutral molecules is given byrnt=5.431018 cm−3.
The number of photonsK needed to extract electrons from
neutral atoms is thenK=8. The electron plasma is essentially
driven by multiphoton ionization(MPI) with coefficient
sK=8=2.88310−99 s−1 cm16/W8. Avalanche (cascade) ion-
ization and plasma absorption identified by the cross section
for inverse bremsstrahlungs=5.44310−20 cm2 complete
this model.
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III. THE REDUCED 2D MODEL

In the following, we consider input electric field distribu-
tions characterized by a beam waistw0, half-width duration
tp, and Rayleigh lengthz0=pw0

2/l0.

A. Derivation

Current limitations of even the most modern, massively
parallel computer machines still prevent us from accessing a
complete description of a km-range propagation of broad,
cm-waisted beams as a whole, in reasonable CPU times. For,
e.g., a beam waist of about 2.5 cm only and a pulse duration
,100 fs, the appropriate resolution would require at least
237 mesh points for numerical box lengths insx,y,td of 15
315 cm2 and 600 fs, respectively. In addition, it is often
necessary to employ an adaptively refined step alongz able
to resolve correctly the sharp peaks coupled to narrow
plasma channels with sizeø50 mm, emerging along the fila-
mentation process. Numerical simulations fulfilling these
needs then consume several Terabytes in memory for a single
run, which we have to avoid. For this reason, we may alter-
natively derive a reduced model from the original
s3D+1d-dimensional equations. This model amounts to re-
ducing the number of effective dimensions by freezing suit-
ably the temporal dependencies of the wave field. Even
though this reduction is primarily motivated by technical
constraints, it also allows us to gain a deeper insight into the
transverse dynamics of the filamentation phenomenon.

To establish the 2D model, we first apply some prelimi-
nary approximations. Considering subpicosecond durations,
avalanche ionization and related plasma absorption have a
weak incidence on the pulse dynamics for the parameters
examined below and we thus ignore them. We can also omit
group-velocity dispersion, whose physical coefficientk9
=0.2 fs2/cm makes it too weak for being a key player com-
peting with ionization of air molecules over filamentation
distances limited to 100 m. Former numerical simulations in
this field showed that femtosecond filaments result from the
competition between Kerr self-focusing and MPI. We thus
assume that MPI mainly counterbalances Kerr self-focusing
at a time slicet. tcszd where a dominant spike with temporal
extentT emerges in the pulse temporal profile. This duration
T is conjectured to keep the same order of magnitude along
propagation. Therefore we decomposeE as follows:

Esx,y,z,td = csx,y,zd 3 xft,tcszdg, s2d

where the temporal distribution for the highest-intensity peak
is modeled by the Gaussianxft ,tcszdg=e−ft− tcszdg2/T2

. Under
the previous hypotheses, we can plug the above expression
of E into Eq. (1), use the expression of

r .Î p
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where erfsxd denotes the usual error function, and integrate
Eq. (1a) over the entire time domain after multiplying it by
x. The resulting equation forc reads
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Here, the integralD follows from averaging in time the de-
layed Kerr component, where, in agreement with antecedent
studies(see, e.g., Refs.[5,17]), we shall henceforth impose
u=1/2. Equation(3) describes the transverse dynamics of fs
beams, with appropriate coefficientsa ,g keeping the trace of
averaged variations in time of the pulse. It is worth noticing
that this model does not depend on the longitudinal location
of the time slicet= tcszd. The only arbitrariness is the choice
of the peak durationT. On the one hand, a natural assump-
tion would be to opt forT= tp, i.e., an ionization front raises
from a wave structure with mean duration comparable to that
of the input pulse. For example, whentp=85 fs and tK
=70 fs, this choice leads toD.0.707 anda.0.57. On the
other hand, there now exists evidence[15,18] that MPI can
shorten pulses to mean duration reaching 1/10 of their initial
values. SettingT=0.1tp with tp=85 fs then provides the co-
efficients D=0.117, so thata=0.39. Note from these esti-
mates that the global effect of the delayed Kerr component is
to increase the effective power for self-focusing to some ex-
tent. This property may explain former experimental obser-
vations [1], following which powers above three timesPcr
are often necessary to create one localized filament. Because
we wish to describe filamentation patterns in a full ionization
regime, we henceforth assumeT= tp/10. This value was
found to provide the best approximations of fluence patterns
developed bys3D+1d-dimensional fs pulses.

Let us now discuss inherent properties to Eq.(3) before
proceeding to comparisons of this 2D approach with direct
simulations of Eq.(1).

B. Solitonlike dynamics

For technical convenience, we express Eq.(3) into a di-
mensionless system of units. Only employed in this section,
this change of variables and fields fixes the saturation inten-
sity sImaxd realizing an equilibrium between Kerr and MPI
nonlinearities to the unity. By introducing the rescaled vari-
ables Z=zfsak0n2dK /gg1/sK−1d, X=xÎ2k0fsak0n2dK /gg1/s2K−2d,
Y=yÎ2k0fsak0n2dK /gg1/s2K−2d, the rescaled field A
=csg /ak0n2d1/s2K−2d, and the parametern=sbsKd /2ÎKd
3sak0n2gK−2d1/s1−Kd, it is straightforward to rewrite Eq.(3) in
the form

] A

] Z
= iD'A + i uAu2A − i uAu2KA − nuAu2K−2A, s4d

whereD'= ]2/ ]X2 + ]2/ ]Y2 and the parametern takes the
valuen=0.154 with the above choices ofa=0.39,tp=85 fs,
andT= tp/10.
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1. Conservative casen=0

In the nondissipative regimesn=0d, Eq.(4) admits soliton
solutions in the formA=fsX,YdexpsiLZd, where the soliton
shapef is real-valued and satisfies

− Lf + D'f + f3 − fK+1 = 0. s5d

Here, we restrict ourselves to the single-hump, nodeless
ground state soliton solution. Figures 1(a)–1(c) show the ba-
sic properties of this soliton family characterized byPs, i.e.,

the powerP=euAu2dRW computed on the shapef, its maxi-
mum amplitude fmax and full width at half-maximum
(FWHM) over the soliton parameterL. Low-power solitons
are close to the Townes mode of the cubic NLS equation
[corresponding touAu2@ uAu2K in Eq. (4)], with power Pc
=11.68 and near-Gaussian spatial shape[19]. High-power
ones exhibit a shape resembling high-order super-Gaussians
(SG). Their respective intensityfmax

2 is always below(al-
though close to) the saturation thresholdImax=1.

An important feature is the monotonous increase ofPs vs
L, which implies orbital stability of these nonlinear objects,
in accordance with the so-called Vakhitov-Kolokolov crite-
rion dPs/dL.0 [20] (see also Refs.[21–23]). Figure 1(d)
confirms the stability of such stationary-wave structures from
a numerical computation of azimuthal perturbationsdf
,eimu+ilZ acting against the ground statef, with angular
numberm and eigenvaluel (see details on the related spec-
tral problem in Appendix A). First, we observe that all ei-
genvaluesl are real-valued, so this family of solitons is lin-
early stable. Second, in the parameter range 0.16,l,0.29
(1.05, Ps/Pc,3.2 respectively) there are no internal modes,
i.e., breather modes characterized by periodic oscillations in
their amplitude. Therefore, in this regime we expect the soli-
tons to be particularly robust due to the lack of internal os-

cillations. The corresponding FWHM and intensity maxima
expressed in physical units are 150–200mm and s5–7d
31013 W/cm2, which is in excellent agreement with the
usual waist and intensities reached by femtosecond filaments
in air [16,17,24].

Solitons are strong nonlinear attractors. Starting with any
low intensity field distribution containing sufficient power,
self-focusing always leads to the formation of one or more
solitons. Another consequence of this dynamics is that these
objects attract each other and can mutually fuse. Figure 2
shows iso-intensity plots of the merging of two identical soli-
tons with individual powerPfil and separation distanceD.

From the above analysis, we expect solitons with powers
1.05, Pfil /Pc,3.2 to be specifically robust(absence of in-
ternal modes). Indeed, for fixedD=15, solitons without in-
ternal modes[Fig. 2(b)] merge at larger distancesZ than
those capable of internal oscillations[Figs. 2(a) and 2(c)].
Moreover, if we look at the final states after the fusion pro-
cesses, only in Fig. 2(a) a robust, new fused static waveguide
emerges, starting from 2Pfil /Pc.2,3.2. In Figs. 2(b) and
2(c), the opposite condition 2Pfil /Pc.3.2 leads to “breath-
ing” solutions due to the internal mode withm=2. For an
increased separation,D=20, the point of fusion shifts to sig-
nificant higher values ofZ [Fig. 2(d)]. Reexpressed in physi-
cal units, two filaments separated from each other by a dis-
tance,0.6 mm can propagate over more than 3 m before
merging.

Using virial arguments detailed in Appendix B, these be-
haviors can receive a theoretical justification. Two Gaussian-
like filaments (which is a reasonable approximation for
Pfil ,3Pc) with an amplitude close to saturation may merge
even without dissipation, provided that both their individual
powers and mutual separation distance are below some
thresholds. Whenevern=0, this property can indeed be an-
ticipated from the dynamical relation governing the mean-

square radius of the beam,kR2l=eR2ufu2dRW /P. Analyzing

FIG. 1. (a) Soliton power vsL, (b) soliton amplitude vsL, (c)
soliton width vsL, and(d) eigenvalues of the internal modesdf vs
L. The dashed line marks the maximum value ofl for which dis-
crete(localized) perturbative modes exist, i.e.,løL.

FIG. 2. Isointensity plotsfI iso=0.5g of the fusion of conservative
solitonssn=0d with individual powerPfil and separation distanceD.
The insets show the radial shape of the respective soliton.(a) Pfil

=1.02Pc sL=0.137d andD=15. (b) Pfil =1.92Pc sL=0.254d andD
=15. (c) Pfil =3.84Pc sL=3.02d andD=15. (d) Same parameters as
in (b), but with D=20.
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specific regimes for which the interaction terms entering the
dynamical relation forkR2l remain relevant while the overall
radius of the two-component beam decreases, it is found that
merging applies in particular to Gaussian-shaped solitons
with waist Wfil and powerPfil satisfyingDøDlim =Î10 Wfil
and Pfil ø1.35Pc. For wider separation distancessD@Dlimd,
the interaction terms vanish and the solitons should in prin-
ciple cease to interact. Up to discrepancies linked to the start-
ing assumptions(see Appendix B), these expectations are
compatible with the results shown in Fig. 2.

2. Dissipative casenÅ0

When MPA is introduced, Eq.(4) no longer admits sta-
tionary solutions. Nevertheless, especially forn!1, the sys-
tem still holds certain features, deducible from the conserva-
tive case. First, for intensities far below the threshold,1,
the dissipative term is irrelevant anyway. So, in the self-
focusing regime, formation of “solitons” can proceed as
without losses. After reaching a “quasi-soliton” state with an
intensity,1, dissipation comes into play. Since there exists
a conservative ground state for allPsù Pc, the “quasi-
soliton” slides “adiabatically” down the curve in Fig. 1(a)
until reaching the effective collapse thresholdPc of the cubic
Schrödinger equation. Figure 3(a) shows this property for
different powers of the initial soliton. Due to their “flat top”
shape, high-power ground states undergo higher losses. As a
consequence, starting with high power does not significantly
enlarge the dissipation range, which was found numerically
,70 for input powers up to 20Pc. Reexpressed in physical
units using the above parametersa, tp, and T, this value
predicts a maximum filament length,1 m per pulse, which
agrees with the short “life-time” alongz of the recurrent
filaments observed in[13].

Modeling the solitonsf close to the saturation threshold
as f=expf−sR/Wfil d2Ng with Nù1, it is possible to solve

approximately the power relationdzP.−2nef2KdRW . By us-

ing ef2KdRW =K−1/Nef2dRW .K−1/NPs, we can evaluate the
dissipation rangeDZMPA, along which the beam power per-
sists abovePc, as

DZMPA =
K1/N

2n
s1 − Pc/Psd, s6d

wherePs is the initial soliton power. This estimate takes the
maximum valueDZMPA<25 when Ps@ Pc and N→1. In

physical units,DzMPA predicts a maximum filament length of
<0.35 m, which is in the same order of magnitude as our
numerical result.

Last but not least, dissipation has a significant influence
on the fusion dynamics. By comparing Fig. 3(b) to Fig. 2(d),
we see that the presence of MPA promotes the mutual coa-
lescence of filaments. The point of fusion shifts to signifi-
cantly smaller propagation distances. This behavior is under-
standable in the sense that MPA shifts the “quasi-solitons” to
the low power regimePfil ,1.05Pc, where we expect an
easier merging. Another interesting point is that the dissipa-
tion range can be enlarged with the help of the fusion mecha-
nism. The central beam, visible in Fig. 3(b) at Z<150, in-
deed clearly exceeds the predicted dissipation range of a
single filament.

In summary, Eq.(4) stresses that spatial solitons are the
natural objects modeling self-guided femtosecond filaments
in the transverse plane. Although their individual range of
propagation may be limited to short distances,1 m by
MPA, their capability of merging at relatively low powers
enables them to propagate over more extended ranges.

IV. „2D+1…- VERSUS „3D+1…-DIMENSIONAL NUMERICAL
SIMULATIONS

In this section, we return to physical units and compare
results of our reduced 2D model[Eq. (3)] with correspond-
ing space-time resolved 3D simulations[Eq. (1)].

A. 2D simulations

Reframed in the present context, Fig. 4 illustrates filamen-
tation patterns in the 2D approximation, for which different
beams undergo random perturbations. Because realistic per-
turbations mostly differ from oscillatory modulations lined
on the maximum MI growth rate[11], we opted, by compari-
son with antecedent experimental data[5,6], for an input
anisotropic Nth-order SG beam in the form c
=ÎI0 expf−sx2+2y2dN/w0

2Ng, perturbed atz=0 m by an iso-
tropic 10% random noise in amplitude and multiplied by a
10% noisy Gaussian temporal profilestp=85 fsd. The fluence
distribution fF=e−`

+` uEstdu2dtg of the resulting beam is then
employed as the input condition for the 2D model. Figure
4(a) shows the isointensity plots for a perturbed beam with
N=3/2,w0=1 mm, andPin=20.5Pcr. The beam first forms a
ring giving rise to two filaments. These merge and reform
during a transient stage before they refocus into a robust lobe
at center. Intermittency in filament nucleation occurs in the
early propagation stage over short ranges, which can be com-
pared with the scenario of the optically turbulent light guide
proposed in[13]. However, at larger distances, the filaments
relax to a single one in thesx,yd plane. This waveform af-
terwards does not change until the Rayleigh lengthsz
→4 md, beyond which it diffracts slowly. Filaments reach
the maximum intensityImax,731013 W/cm2 over distances
,DzMPA,1 m, but they asymptotically remain captured in
longer soliton envelopes that locate “optical pillars” in the
medium. Similar patterns of two main filaments fusing into
one were observed to generically occur with different beam

FIG. 3. (a) Decrease of soliton powerPs vs Z, n=0.154, for
solitons with Ps=1.92Pc sL=0.254d, Ps=3.84Pc sL=3.02d, and
Ps=7.56Pc sL=3.32d. (b) Same as in Fig. 2(d), but with n=0.154.
In the region 100,z,150 preceding the fusion event, beam com-
ponents slightly diffract with an intensity going below the selected
isointensity levelfI iso=0.5g.
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shapes and peak powers comprised between 15Pcr and 40Pcr.
This dynamics fully agrees with previous experimental ob-
servations[5]. For higher powers, Fig. 4(b) shows a broader
sN=2d SG beam with 88Pcr and wider waistw0=2 mm. Fila-
mentary structures with the largest separation distances cre-
ate strong individual attractors which organize the beams
into three major long-range pillars composed of solitonlike
filaments. An early stage of “random nucleation” precedes
the formation of these three filamentary channels, which may
move in thesx,yd plane while they attempt to attain an equi-
librium position.

Like the soliton pattern shown in Fig. 3(b), these two
simulations confirm that the mutual interaction between op-
tical cells helps in maintaining the robustness of the beam
envelope over several meters.

B. 3D simulations

For comparison, Eqs.(1) are now solved by means of a
spectral code using fast Fourier transforms in thesx,y,td
variables. Integration along the longitudinal axisszd is per-
formed with an adaptive step tuned on the intensity growth.
In the transverse dimensions, a fixed mesh withDtø0.5 fs
and Dx=Dyø15 mm was used. Simulations were realized
on the massively parallel machine(TERA) of the CEA,
where we used up to 128 processors per run. Details on
further numerical aspects and limitations in
s3D+1d-dimensional computing are given in Appendix C.

Figure 5 shows the filamentation of pulses with the same
input distributions as the ones used in Fig. 4. In Fig. 5(a) we
display the plasma strings produced by the beam with
20.5Pcr. Figure 5(b) shows their associated intensity profiles
in the planesx,y=0,td at differentz positions, along they
axis crossing the two primary spots condemned to merge.
The temporal pulse profile, even subject to strong distortions,
does not prevent the transverse dynamics of the pulse from
developing as in Fig. 4, up to second-order discrepancies in
the focus point linked to the choice ofT (see Sec. IV C).
Although different temporal slices come into play, all of
them support the propagation of cells first nucleated at dif-
ferent locations, then remaining localized around thesame
place in thesx,yd plane. Plasma strings associated with pulse
components of maximum intensity and duration nearby 1/10
of the input pulse dominate, which makes our previous as-
sumption for averaging thes3D+1d-dimensional equations
valid. Finally, Fig. 5(c) depicts the plasma strings created by
the SG pulse with 88 critical powers,N=2 andw0=2 mm.
Three distinct channels clearly emerge in thesx,yd plane.
They do not interact significantly but remain almost robust at
their transverse position, in agreement with the filamentation
pattern of Fig. 4(b).

FIG. 4. Isointensity patternssI iso<1012 W/cm2d of filamentary
structures described by Eq.(3) and created from a SG beam with(a)
N=3/2, Pin=20.5Pcr andw0=1 mm, and(b) N=2, Pin=88 Pcr and
w0=2 mm.

FIG. 5. (a) (Color online) Plasma stringsfmaxtrsx,y,z,td
ù1015 cm−3g of the 20.5Pcr SG beam used in Fig. 4(a). (b) uEu2 vs
sx,0 ,td for the same beam.(c) Plasma strings from the 88Pcr SG
beam of Fig. 4(b).
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C. Limitations of the reduced model

Major advantages in employing the 2D model concern, of
course, the gain in computation time when we only focus on
the spatial dynamics of the pulse(see Appendix C). With this
aim, Eq.(3) has been successfully employed for clearing up
alternative problems, such as, e.g., the interaction of an ul-
trashort filament with an opaque droplet[24,25]. Experi-
ments on this topic[24] revealed the remarkable robustness
of femtosecond filaments with typical waists,150 mm
when they hit a micrometric droplet with a diameter as large
as 2/3 the filament size. The collision results in a minimal
loss of energy and the filament self-heals over very short
distances. Recent numerical investigations[25] analyzed this
intriguing property. The interaction pattern, simulated from
the full 3D system, displayed evidence of the complete re-
building of the pulse over 2 cm only. The same filament
modeled by solitons of Eq.(3) restored an identical pattern
within the same longitudinal interval.

Besides such convenient aspects, a 2D reduction of the
propagation equations cannot, unfortunately, avoid certain
weaknesses. Identifying a 3D, time-resolved filament with a
2D “soliton” means that we only focus on the core of the
filament and discard its different time slices[15]. Indeed, Eq.
(3) accounts for the time slice with maximum intensity only.
For describing, e.g., the self-healing of a fs filament with a
micrometric droplet, this simplification has almost no inci-
dence because the interaction length of the beam with the
obstacle is short along thez axis. However, when we simu-
late long-range propagations, certain concessions in the
agreement with fully time-resolved computations have to be
made.

(i) The arbitrary choice of the temporal extentT=0.1tp
prevents us from restoring quantitatively the early self-
focusing distances of a beam at relatively low powers
sø100Pcrd, as can be seen by comparing Figs. 4 and 5. In-
deed, this choice determines the value of the parametera
[Eq. (3)] that fixes the effective critical power in the pulse
time slice under consideration. SettingT=0.1tp is suitable for
describing filamentation patterns evolving in ionization re-
gimes, but this choice can lead to visible discrepancies in the
location of the first focus point, for which the valueT= tp
yielding a highera would be more adapted. Remembering
Marburger’s formula[10] that evaluates the collapse point,
zc, of collimated Gaussian beams in the self-focusing regime:

zc =
0.367z0

ÎsÎaPin/Pcr − 0.852d2 − 0.0219
, s7d

it is seen right away that the differences in the location of the
self-focus point indeed become more pronounced at low ra-
tios Pin /Pcr and for low values ofa.

(ii ) Experimental setups for femtosecond pulse propaga-
tion are currently based on chirped-pulse amplification
(CPA) Ti:sapphire laser sources. CPA techniques allow us to
modify the effective initial pulse duration by varying the
distance between the gratings of the pulse compression sys-
tem. These variations also entail a chirp onto the input pulse
phase(E→EeiCt2, C=const), which can lead to noticeable
changes in the early self-focusing distances by GVD com-

pensation[26]. Pulse chirping is used to monitor the onset of
filamentation[14,27]. Since Eq.(3) ignores the temporal dy-
namics, applying this model to pulses with an initially large
chirped phase may then enhance the differences with the
experimental observations.

(iii ) Because the averaging procedure involves a single
time slice only, the 2D model cannot describe the second
focusing of pulses(see, e.g.,[16]), which characterizes fem-
tosecond filaments and enables the latter to pursue their
propagation over about 1 m. This second refocusing is asso-
ciated with the late growth of the trailing edge of the pulse.
Although it concerns a residual propagation interval in which
the pulse intensity noticeably decreases, this process allows
one to maintain a femtosecond filament over larger distances
than those accessible by the reduced model. In connection
with this point, the 2D model also overestimates the losses
due to MPA. In full 3D configurations, defocused time slices
with lower intensities can maintain a nearly constant power
upon propagation until they may focus again. The reliability
of the reduced model may thus be limited in, e.g., examining
some postionization regimes.

The above discrepancies must not, however, elude the ma-
jor advantage of the 2D model, which can describe the quali-
tative dynamics of ultrashort, high-power pulses with broad
waists over considerable distances of propagation.

Keeping these limitations in mind, but aware of the infor-
mation conveyed by the 2D model, we can outline, on the
basis of the previous 2D and 3D numerical results, a generic
scenario for the filamentation of terawatt fs pulses as fol-
lows: (i) Beam modulations give rise to short-range filaments
that grow in intensity until reaching the ionization threshold
Imax. In this limit, near-soliton filaments, searching for an
equilibrium position, recur in the diffraction plane within an
optically turbulent regime during the early stage of propaga-
tion [13]. (ii ) As they attain a quasistable configuration with
respect to their neighbors, short-range filaments either amal-
gamate or self-attract without merging, depending on their
inner power and separation distances, in order to form a lim-
ited number of clusters, named as “optical pillars.” These
optical pillars then continue the propagation over longer dis-
tances.

Note that this scenario applies to input beams where an
isotropic random noise first creates short-scale cells that next
relax to quasicoherent structures. For experimental beams
exhibiting salient defects, it is not excluded that optical pil-
lars are fixed by the most intense defects of the input beam
profile, which further excite turbulent cells in their vicinity,
as evidenced below(see also[7]).

V. LONG-DISTANCE PROPAGATION EXPERIMENTS

To figure out how terawatt laser pulses degenerate into
multiple filaments over long distances, we investigate some
evolution stages in the filamentation patterns produced by
the Teramobile laser[14]. This laser system delivers at the
10-Hz rate pulses with energy up to 0.5 J, transverse diam-
eter equal to 5 cmsw0.2.5 cmd, and FWHM duration tun-
able from 100 fs(minimal chirp) to 600 fs (large negative
chirp) by detuning the compressor with a chirp opposite to
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air dispersion. The collected experimental data consist of
photos taken from a white screen positioned in the plane
orthogonal to the beam path. In the first two series of experi-
ments (Figs. 6–8), a filter with narrow bandwidth around
l0=800 nm was put in front of the camera. Two photos with
exposure time of 1/8th s were taken at each distance, so that
pictures mostly show single-shot beam patterns. Pictures fea-
turing double-pulse images did not present qualitative
change from shot to shot, up to slightly more visible fila-
ments or more pronounced ones at certain distances(see Fig.
6). Although the number of “visible” filaments may vary to
some extent, the zones at which distinct clusters of filaments
develop remain identical and only the relative intensity of
certain spots exhibit differences. We consider these fluctua-
tions as being of second-order importance in the global evo-
lution of the filamentation pattern.

Concerning this point, let us emphasize that the resem-
blance between the experimental and numerical patterns in
the forthcoming analysis will not lie in the exact position and
number of the filaments, which may undergo similar fluctua-
tions and are subject to atmospheric turbulence or local dif-
fusive processes as they propagate. Instead, qualitative simi-
larities occur in the following sense: Starting with an input
coarse profile, the beam amplifies its initial inhomogeneities
and, through modulational instability, it produces bright
spots connected by lower-intensity bridges. A “global” pat-
tern then emerges from the zones of highest concentration of
light, which create characteristic figures(ring/trident/cross).
These aspects are actually well restored by the 2D simula-
tions, using the digitized fluence of the experimental input
beam.

A. “Low”-power filamentation regime

To start with, we examine the filamentation dynamics of
terawatt beams with about 100 critical powers only. Figure 7
shows the occurrence of light filaments over 55 m from the
Teramobile beam with 230 mJ energy and pulse duration of
600 fs. Modulations induced by caustics distributed in the

spatial beam profile develop as follows: In the early propa-
gation stage, the broad(SG-like) beam tends to develop a
ring-shaped zone by diffraction. At the edge of the beam
where fluctuations are the most intense, filaments emerge
from local defects. Next, several cells occur along a flattened
ring inside the focal spot. More filaments are then generated
around this ring. They finally self-organize into a three-
pronged fork shape.

For comparison, we integrated thes2D+1d-dimensional
Eq. (3) from a data file of the experimental input beam mea-
sured at the distanced=1 m after the laser exit. With a pulse
duration of 600 fsstp.510 fsd, the coefficienta in Eq. (3)
takes the valuea=0.51. With a beam waist of 2.5 cm, a very
high spatial resolution[namely, 81922 in the sx,yd plane for
a box length of 6w0] was required in order to solve narrow
optical structures reaching 1000 times the input beam inten-
sity I0. Figure 7(b) illustrates the results of numerical simu-
lations. The beam containing,120 critical powers begins to
form local clots from the highest intensity regions. Then,
others emerge along a ring inside the focal spot. The final
pattern, involving several small-scale spots, results in a
trident-shaped figure, comparable with the experimental one.
For such beams with a few tens of critical powers only, Eq.
(6) describes the filamentation of a disordered optical distri-
bution having an effective ratio of input power over critical
of about ,aPin /Pcr.60, which limits at the very most to
Pin /Pfil .24 the number of genuine filaments reaching the
ionization threshold. Filaments develop as asymptotic states
and become decoupled from the initial amplitude and phase
of the wave field. The discrepancy existing in the distance
where the first filaments occur,zc.50 m, and the experi-
mental measurement,zc.30 m, is attributed to the pulse
chirping, which Eq.(3) ignores, and to our former choice
T=0.1 tp. As underlined in Sec. IV C, this value suits the
experimental development of filaments in the ionization re-
gime, but it cannot restore the early self-focusing distances
of the beam requiring ratherT= tp. KeepingT! tp is, how-
ever, necessary to approach a suitable averaged power ratio
in the ionization regime, where filaments mostly evolve.

FIG. 6. (Color) Shot-to-shot fluctuations in
the filamentation pattern of the 10-Hz rated Tera-
mobile laser delivering 230-mJ pulses with(a)
600 fs durationsPin.120Pcrd at z=40 m, and(b)
100 fs durationsPin.700Pcrd at z=35 m.
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From the numerical as well as experimental patterns, we can
observe that some filamentary channels persist from the first
focus point over several meters, whereas others are randomly
nucleated over shorter longitudinal scales.

B. “Moderate”-power filamentation regimes

Reducing the pulse duration to 100 fsstp=85 fsd makes it
possible to investigate filamentary patterns promoted by fs
beams with powers as high as 700Pcr, i.e., 2.3 TW. In this
case, displayed in Fig. 8(a), the beam breaks up into more
cells than in the previous lower-power case. Following the
estimate recalled in the Introduction, up toaPin /Pfil ,110
light cells may form in principle withPfil .p2Pcr/4. Figure
8(b) reproduces these experimental patterns from a numeri-
cal integration of Eq.(3) performed with the parametera
=0.39 fixed bytp=85 fs. Note that the discrepancies in the
early self-focusing distances signaled in the previous case
almost completely disappear at higher powers. Here, a mini-
mal pulse chirping was used. The agreement between the
experimental and numerical results is thus quite satisfactory.

The labels(1)–(3) locate active zones in the beam, which can
clearly be identified in both the experimental and numerical
patterns:(1) points out a couple of bright, robust filaments,
(2) restores an arch of the diffraction ring pattern supporting
primary hot spots while(3) indicates a crosswise configura-
tion of filaments. By comparing the four snapshots with
those displayed in Fig. 7, these patterns reveal that, although
some filaments are able to survive over several meters at the
most powerful regions of the pulse, random nucleation of
filaments in the entire focal spot seems more privileged,
compared with the break-up of the former 120Pcr beam. We
explain this property by the high power density. “Optical
pillars” cannot propagate independently due to their smaller
separation distance. The primary filamentary cells experience
more substantial power transfers through the overall surface
of the beam.

C. “High”-power filamentation regimes

Concerning now higher power levels, Fig. 9(a) displays
filamentation stages for pulses delivered by the Teramobile

FIG. 7. (Color) Filamentation patterns(a) pro-
duced experimentally for the 120Pcr beam atz
=1,30,40, and 55 m.(b) Numerical computa-
tions of the same beam from Eq.(3). Maximum
intensity is limited to twice the input intensity. In
this figure as well as in Figs. 8 and 9, the image
scale is about 1.5w031.5 w0 (w0 = input beam
waist), for both the experimental and numerical
snapshots.
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FIG. 8. (Color) Filamentation patterns(a) pro-
duced experimentally for the 700Pcr beam atz
=30 and 50 m.(b) Numerical computations of
the same beam from Eq.(3). Labels(1)–(3) indi-
cate beam zones discussed in the text.

FIG. 9. (Color) Filamentation patterns of the
1000Pcr beam delivered by the Teramobile at
different propagation distances:(a) Experimental
transverse distributions.(b) Image plots from nu-
merical computations performed with Eq.(3).
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system, with a FWHM duration of 100 fsstp=85 fsd and
330 mJ energy. The power range thus accesses 3 to 4 TW,
i.e., about 1000 critical powers. No filter was used in this
series of experiments. Although a nontrivial level of overex-
posure cannot be avoided from the most intense regions of
the beam, removing the 800 nm filter makes it possible to
exhibit true-colored filaments and to emphasize major optical
pillars through the white-light conical emission which sig-
nals the presence of nonlinear self-focusing and subsequent
plasma generation[14,27]. The filamentation scenario fol-
lows the former one: A ring-shaped zone supports a few big
spots initiated by the highest-intense defects of the input
beam. These “hot” spots self-focus more and more over sev-
eral tens of meters, while white light occurs on the detection
screen. MPA dissipation and evacuation of power excess due
to the collapse dynamics undergone by the primary filaments
allows one to transfer power to the central zone of the beam,
which serves as an energy reservoir for exciting secondary
filaments. Equation(3) computed witha=0.39stp=85 fsd
restores these features with almost no discrepancy in the first
focus point fzc.10 mg, as the beam contains very higher
power. Figure 9(b) reproduces the experimental images in
the same longitudinal interval.

From the numerical computation, the bright spots ob-
served in the experiments appear to be first excited by an
intense primary filament, which afterwards give rise to a
bunch of secondary ones emerging as smaller-scale cells lo-
cated near the central spot. We can observe how the local
defects rapidly generate intense spots along a ring. In the
upper arch of this ring, the most intense filaments, either as
individual entities or gathered in clusters of a few cells, pro-
duce,4 distinct active zones, in agreement with Fig. 9(a).
These zones actually consist of robust optical pillars, follow-
ing the definition given above. They persist over several tens
of meters, whereas secondary filaments rapidly recur first
around them, and next in the central part of the beam.

Figure 10 details the spatial distortions undergone by the

lowest(120 Pcr, top row) and highest(1000Pcr, bottom row)
power beams, computed with the 2D reduced model. It dis-
plays evidence in both cases of the early amplification of the
initial beam defects, which serve as central spots around
which short-living filaments develop into an optical pillar.
Note the growth of intense spikes that remain in a self-
focused state over several tens of meters, while secondary
peaks attain similar intensities at later distances.

D. “Moderate”-power beams in focused geometry

While the previous observations on screens provided de-
tailed information about the beam structure at a given dis-
tance, they were, however, limited to semiqualitative obser-
vations. Fluctuations in the initial beam as well as from the
atmosphere let the profile vary from shot to shot(see Fig. 6),
so that successive images at different distances cannot be
taken as quantitative information providing a complete
propagation sequence over long distances. Moreover, the
continuity and length of the individual filaments could not be
assessed with accuracy.

In order to circumvent this limitation, we used a spatially
extended, single shot characterization of the beam profile.
The Teramobile laser was slightly focusedsf =40 md from a
larger beam waistsw0.5 cmd and emitted an energy of
250 mJ in 100 fs pulses(2.5 TW, 760Pcr). It was installed
outdoors on flat humid ground and shot against the wind
direction into an aerosol generator producing a thin haze at a
distance of 48 m from the laser exit. With a soft regular
wind, this setup produced a pretty homogeneous light haze
along a distance of up to 10 m towards the laser beam. The
haze density was adjusted so that beam scattering was effi-
cient enough to detect the filaments, with limited perturba-
tion on the beam propagation itself. In those conditions, im-
age blurring by multiple scattering was negligible[24].

The beam was imaged with a CCD camera in true colors,
from a near-forward direction. More precisely, the CCD

FIG. 10. (Color online) Intensity vssx,yd for the beams shown in Fig. 7(b) (top row) and Fig. 9(b) (bottom row).
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camera was placed over the aerosol generator, about 25 cm
above the center of the laser beam, and directed to the laser
output of the Teramobile system. This setup allowed us to
acquire single shot(exposure time 1/8 s) pictures of a long
section(up to 10 m) of the beam(Fig. 11). Triangulation,
calibrated with reference points along the laser path, enabled
us to retrieve the distance calibration indicated in Fig. 11.
Note that the beam was imaged with a very strong parallax,
since the camera was placed at only 25 cm above it. Hence
the triangulation yielding the distance scale is not linear and
explains the apparent short distance between the laser exit
and the first marked distances42 md.

Figure 11 exhibits a quasicontinuous three-pillar structure
that emerges fromz.40 m and was reproducible from im-
age to image. In this figure, the fluctuating intensity along
the beam path is due to inhomogeneities in the haze, as was
checked by visual inspection. Here, the observation of seem-
ingly continuous structures along several meters on a single-
shot image is evidence for the occurrence of optical pillars
within femtosecond laser beams. In the present configura-
tion, the beam self-organizes into three major, distinct clus-
ters of light after passing through the focal point of the long-
range converging lens.

Figure 12 shows a 3D plot issued from a direct numerical
integration of Eq.(3), using the same input intensity distri-
bution multiplied by the parabolic phasee−ik0r2/2f that ac-
counts for the lens curvaturesf =40 md. As seen from this
figure, many filaments arise as the beam approaches the focal
lengthz. f =40 m, where its minimum waist is attained. Re-
markably, few filamentary structures emerge after this point:
Only three of them propagate over,10 m, under the form of
sequences of quasicontinuous channels having the same di-
rection and capable of covering more than 2 m as a whole.
We attribute the transverse deflection of the most external
filaments to the natural divergence of the beam envelope
after the focus. This result again confirms the validity of the
s2D+1d-dimensional model, together with the concept of
“optical pillars”: Long-range filaments can develop as indi-
vidual entities located in the same region of the transverse
plane, where a few intense cells are recurrently emitted as
they propagate in a quasicontinuous way.

VI. CONCLUSION

In summary, we have investigated the multiple filamenta-
tion of infrared femtosecond pulses in air, engaging high
powers in parallel and focused geometries. Although inter-
mittency of filaments affects the pulse dynamics, turbulent
cells can converge towards long-range envelopes. These
maintain the propagation over long distances while keeping
an intensity close to the ionization threshold.

To understand these behaviors, we elaborated on a 2D
model[Eq. (3)] describing the spatial dynamics of fs pulses,
even when they undergo a delayed Kerr response. First, we
thoroughly discussed the major properties of this reduced
model by specifying both conservative and dissipative fun-
damental solitonlike solutions and their mutual interaction
regimes. A noticeable enhancement of the propagation range
through fusion processes combined with MPA was put in
evidence. Second, we tested this model over a few meters for
ultrashort mm-waisted pulses. By fixing the effective pulse
temporal extentT to 1/10 of the input duration in ionization
regimes, results from this simplified model were observed to
reasonably agree with the transverse patterns of
s3D+1d-dimensional pulses. For narrow beamssw0=1 mmd
and weak powerssø40Pcrd, two filaments form and merge
into one central lobe. For broader beamssw0=2 mmd up to

FIG. 11. (Color) Three “robust” filamentary
structures propagating over,8 m from the focal
point sf .40 md of a converging beam with
760 Pcr delivered by the Teramobile laser system.

FIG. 12. Propagation of the same beam as in Fig. 11, numeri-
cally computed from Eq.(3) with a digitized data file of the input
beam intensity profile affected by a spatially parabolic phase. Three
filaments, identified by the labels 1, 2, and 3, can develop long
sequencessù2 md after the focus. Although partly disconnected
over ,10 m, their strong directivity yields the appearance of qua-
sicontinuous strings of light. The numerous filaments occurring at
z,40 m are not visible in Fig. 11 due to the strong parallax in the
beam imaging.
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90 Pcr, several filaments propagate almost independently of
their neighbors. The physical length of each asymptotic fila-
ment is of the same ordersø1 md in both configurations.
This result is important, since Eq.(3) provides an easy model
to integrate, which can be useful for estimating the number
and position of filamentary channels created by high-power
fs pulses.

Next, we investigated experimentally the multiple fila-
mentation of collimated beams delivered by the Teramobile
laser, for powers up to 3 to 4 TW. Experimental patterns
were then simulated by means of the previous 2D reduced
equation, using a digitized file of the input beam fluence as
an initial datum. Along distances limited to 100 m, long-
range filaments were observed to be initiated by the most
intense fluctuations of the input beam and those may persist
over several tens of meters. From these “optical pillars,”
small-scale spots arise and recur rapidly at other places in the
diffraction pattern, in agreement with the scenario of
“optically-turbulent light guides” proposed in Ref.[13]. The
long-living primary filaments, as well as unstable randomly
nucleated ones, can be described by the 2D model, which
reproduces the qualitative behaviors in the filamentation pat-
terns. Direct confrontations of terawatt ultrashort pulses and
their numerical simulations revealed the existence of active
optical zones keeping the beam collimated over considerable
distances.

Finally, focused beams were investigated over several
tens of meters along a complete propagation sequence. By
optical coalescence, reduction of the beam waist in linearly
focused geometry allowed us to form very long light chan-
nels over almost 10 m by gathering all filamentary compo-
nents into a limited number of light strings. These strings,
although longer than one elementary filament and keeping
the same direction, were numerically revealed to still de-
velop from intermittent cells remaining localized in the same
region of the diffraction plane. This observation thereby con-
firms the concept of “optical pillars” supporting the long
propagation of quasicontinuous light tubes.
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APPENDIX A: SPECTRAL PROBLEM FOR SOLITON
STABILITY AGAINST NONISOTROPIC PERTURBATIONS

We briefly sketch the spectral equations for the ground
state stability versus nonisotropic perturbations with azi-
muthal numberm. According to the standard procedure for
linear stability analysis we introduce a small perturbationdf
on the soliton shapef. We plug A=sf+dfdexpsiLZd into
Eq. (4) and linearize it with respect to the perturbation. The
resulting evolution equation for the perturbative modedf is
then given by

]

] Z
df = iD'df − iLdf + i2f2df + if2df*− isK + 1df2Kdf

− iKf2Kdf* . sA1d

In order to separate azimuthal eigenfunctions of the
transverse Laplacian, we transform Eq.(A1) from
Cartesian sX,Yd to polar sR,Qd coordinates. With
the ansatz dfsR,Q ,Zd=df1sRdexpsimQ+ ilZd
+df2

*sRdexps−imQ− il*Zd, the eigenvalue problem is then
derived under the form:

SL̂11 L̂12

L̂21 L̂22

DSdf1

df2
D = lSdf1

df2
D , sA2d

wheredf1 anddf2 are independent complex functions,L̂11

=−L̂22=D'−L+2f2−sK+1df2K and L̂12=−L̂21=f2−Kf2K.
Figure 1(d) in Sec. III B shows the eigenvaluesl of the

discrete (localized) perturbation modessdf1,df2d of Eq.
(A2), numerically identified for different values ofm. All
modes have zero growth ratesIm l=0d, which implies linear
stability.

APPENDIX B: VIRIAL ARGUMENTS FOR THE FUSION
OF CONSERVATIVE SOLITONS

By repeating the analysis proposed in[11], the merging of
nonlinear filaments follows from the dynamical relation gov-
erning the mean-square radius of the beam,kR2l
=eR2ufu2dRW /P, whenevern=0:

PdZ
2kR2l = 8E u¹'Au2dRW − 4E uAu4dRW+

8K

K + 1
E uAu2sK+1ddRW ,

sB1d

and applied to two Gaussianlike solitons with waistWfil ,
power Pfil , and intensity close to saturation. After inserting
the two-component trial solution

Ain =Î 2Pfil

pWfil
2 fe−uRW+DW /2u2/Wfil

2
+ e−uRW−DW /2u2/Wfil

2 g ,

expanding Eq.(B1) enables us to predict that well-separated
filaments(D.Î2Wfil ) should fuse into a single lobe if the
total beam radius decreases in self-compression regimes
sdZ

2kR2l,0d where the exponentially decreasing interaction
terms remain dominant. When the beamlet intensities attain
their saturation levels2Pfil /pWfil

2 →1d, Eq. (B1) reduces to
the interplay between linearsFlind and nonlinearsFnld con-
tributions, i.e.,PdZ

2kR2l.s32Pfil /Wfil
2 dsFlin −Fnld with

Flin = 1 + s1 − Xde−X; sB2d

Fnl = 0.93
Pfil

Pc
F1 + 3e−2X + 4e−3X/2−

2K

sK + 1d2

3f1 + 2sK + 1de−s2K+1dX/sK+1dgG ,

whereX;D2/2Wfil
2 . The requirement that interaction terms
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dominate(mostly through linear diffraction inFlin) while the
beam still self-compresses imposes certain constraints on the
power level, which must not be too high for avoiding strong
localization of the solitons at their own centroids. This need
particularly applies to Gaussian-shaped solitons satisfying
DøDlim =Î10 Wfil and Pfil ø1.35Pc. For wider separation
distancessD@Dlimd, exponential terms in Eq.(B2) vanish
and the solitons are expected to no longer interact mutually.

These predictions reasonably agree with the results of Fig.
2. Note, nonetheless, that the previous restrictions inferred
on the power bounds and separation distances are subject to
discrepancies linked to the modeling of soliton shapes by
Gaussian functions with saturated intensities. Figure 2(d)
shows, for instance, that solitons with powers exceeding
1.35Pc and separation distancesD.Dlim sDlim <15d are still
able to merge at long propagation distances. However, those
distances are large compared with the dissipation ranges lim-
iting the filament self-guiding when we introducenÞ0 (see
Fig. 3).

APPENDIX C: COMPLEMENTARY NUMERICAL
ASPECTS

In this appendix we shortly discuss some specifications
related to our numerical codes. A spectral split-step scheme
was employed for solving Eqs.(1) and (3). Fast Fourier
transformations were performed along the space-time direc-
tions sx,y,td by routines of the FFTW library, version 3. All
codes were parallelized for distributed memory architecture
by using the MPI (message passing interface) library.
Throughout the simulation, the increment along thez axis
adapted itself as a function of the wave field intensity com-
puted from the nonlinear phase variations, i.e.,
Dz/4z0,aI0/ Imax with a remaining weaker than 10−3. Relax-
ation to larger stepsDz was monitored by an upper limit
Dz/4z0.bI0/ Imax with bùa/2.5. Absorbing boundary con-
ditions and a sufficiently large numerical box with character-
istic lengthsLtù6tp, Lx, Lyù6w0 guaranteed an undisturbed
propagation of the pulse. The number of points required for
an adequate resolution currently attained 512–1024 in space
and 2048 in the temporal direction for the
s3D+1d-dimensional numerical runs. The code integrating
the 2D reduced model was elaborated on the same architec-
ture, with one dimension suppressed.

Simulations were realized on the massively parallel Com-
paq alpha-cluster(TERA) of the CEA. Up to 128 processors
were employed for runs consuming several thousands of

CPU hours. In spite of these substantial capacities,
s3D+1d-dimensional simulations of broad(cm-waisted)
pulses over several tens of meters could not be properly
achieved in reasonable time. As mentioned in Sec. III A, one
of the sharpest constraints met in 3D numerical computing is
to solve accurately individual plasma channels, whose typi-
cal size reaches a few tens of microns only. In this regard, we
find it instructive to show plots of underresolved filamentary
patterns corresponding to Figs. 5(c) and 8, respectively(see
Fig. 13). In this latter case, the input beam amplitude has
been multiplied by a perturbed temporal Gaussian profile.
Figure 13 illustrates the results ofs3D+1d-dimensional
simulations performed with spatial steps limited to
,100 mm along thex and y directions. Underresolution
leads to an artificial increase of the number of small-scale
cells, caused by the coarse plasma response that cannot hold
a robust channel. Energy is dissipated outwards, which con-
tributes to increase falsely the number of light cells. The
filaments finally spread out too early, compared with the ex-
perimental data and with the results yielded by the 2D model
[Eq. (3)], integrated with much higher spatial resolution.
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