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Abstract. We study how the well-known lidar equation is
affected by the use of ultra-short, high-power laser pulses.
Because of the self-focusing and self-guiding, the overlap
function ξ , representing the reduction fraction of the sig-
nal resulting from geometrical effects inside the experimental
system, needs to be reconsidered. The losses due to multi-
photon ionisation in the filament entail a heavy weakening of
the return signal. We also investigate the contribution of the
white-light components generated by self-phase modulation.

PACS: 42.50.H; 42.68; 42.65.R; 42.68.W

Light detection of ranging (lidar) [1, 2], an optical analogue
of radar, is now a classical technique for atmospheric remote
sensing, with unique versatility and three-dimensional (3D)
mapping abilities. However, retrieving the atmospheric com-
position from a lidar signal is not straightforward. Gases with
narrow absorption lines may be detected by the Differential
Absorption Lidar (DIAL) technique. For gases with overlap-
ping absorption bands leading to interference in the measure-
ments, or for aerosols [3], strong assumptions regarding the
particles at play are necessary in order to determine absolute
concentrations.

Recently, it has been proposed [4] and demonstrated [5, 6]
that nonlinear lidar measurements based on high-power fem-
tosecond laser pulses could provide more information than
their linear counterparts. A white-light supercontinuum gen-
erated by high-power laser pulses propagating in air provides
a broadband pulsed light source from the ultraviolet (UV) [7]
to the infrared (IR) [8]. The IR wavelengths, which have
been measured up to 4.5 µm, open the way to measurements
of pollutants absorbing in this spectral domain such as me-
thane, or with overlapping spectra, such as volatile organic
compounds, which could be resolved through multi-spectral
lidar measurements [5]. A white light supercontinuum lidar
signal was observed up to 13 km [5, 6]. Ultra-short pulses
could also give rise to significant size effects in the microcav-
ities formed by spherical, transparent aerosols such as cloud
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droplets. When the pulse is shorter than the cavity length, it
can be localised in the aerosol cavity. This so-called ballis-
tic mode may lead to a strong enhancement of the lidar signal
received from the smallest particles [4, 25].

Nonlinear lidar requires high-power, ultra-short (femto-
second) laser pulses which have a very complex behaviour
when propagating in air. Basically, they first undergo self-
focusing due to the Kerr effect, giving rise to a sharp in-
crease in the intensity. Then, ionisation takes place and in-
duces defocusing. The equilibrium between these two pro-
cesses leads to a self-guided filament [9–12] with a diameter
of about 100 µm, and which can expand over distances of at
least 200 m [13]. Due to the high intensities in the filament,
a strong self-phase modulation occurs, which entails a wide
spectral broadening, i.e. the supercontinuum generation men-
tioned above.

On the other hand, losses due to the ionisation in the
filament lead to a decrease of the pulse energy. When this
intensity has fallen below a critical value [24], the balance
between Kerr focusing and plasma defocusing can no longer
be maintained and the self-focused filament ends. Then the
beam undergoes a so-called conical emission [10, 14, 15] with
a typical divergence of 0.1◦. The precise mechanism of the fil-
ament propagation is not yet clear. At least three models have
been proposed: moving focus [11], the self-wave-guiding
model [9, 10] and the spatial replenishment model [12]. An-
alytical [16–18] as well as numerical [19–23] computations
simulating the propagation of high-power laser pulses in air
are difficult because of the high nonlinearity of the pro-
cesses at play. This leads to typical computing times of 1 h
per calculated metre of propagation, which would correspond
to 1 year for a 10-km path. Such values illustrate the need
for a more phenomenological description allowing a numer-
ical treatment of the propagation of high-power laser pulses
over the several-kilometre ranges involved in lidar experi-
ments, and hence for a computationally efficient nonlinear
lidar equation.

The first nonlinear extension to the lidar equation was pro-
posed by Kasparian and Wolf [4]. However, this work focused
mainly on the changes to the backscattering term due to tran-
sient size effects in aerosols. Propagation effects such as self-
focusing were not considered there; hence the extinction term
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was left unchanged, which is physically unrealistic in view of
the high power at play. In this Letter, we investigate the modi-
fications to the geometrical and propagation/extinction terms
due to nonlinear propagation of high-power laser beams, as-
suming an idealised shape.

At this stage, it is worth recalling the usual linear lidar
equation [1]. The detected power E collected by a detector
with surface A0 after the backscattering of a laser beam of
initial power EL and wavelength λ0 is given by

E(λ0, z)= EL
A0

z2

cτd

2
ξ(λ0, z)

×β(λ0, z) exp


−2

z∫
0

α�(λ0, z′)dz′

 . (1)

Here, z denotes the distance from the detector to the atmo-
sphere slice where the light backscatters; α� and β are the ex-
tinction and the backscattering coefficients respectively. The
overlap function 0 ≤ ξ(λ0, z) ≤ 1 includes the various signal
losses due to the specific geometrical configuration of the sys-
tem laser/detector. As for τd and c, they are respectively the
length of the pulse and the speed of light in air. The meaning
of the different contributions in (1) is rather clear. A part of
the laser power EL is absorbed or scattered according to the
Beer–Lambert (exponential) law during the forward travel.
Then, a part βA0/z2 of the power available at distance z is
re-emitted back to the detector, and exponentially attenuated
again (hence the factor 2 in front of α�) before reaching the
telescope. The appearance of the factor cτd/2 is related to the
fact that the power recovered immediately after the backscat-
tering is proportional to the thickness of the atmospheric slice
coming into play.

In the present paper, we shall modify the standard lidar
equation (1) in order to describe both geometrical beam-
shape influence (Sect. 1) and extinction due to multi-photon
ionisation (Sect. 2), which are the two main effects at play
in the propagation of high-power laser pulses. From this, we
shall deduce an approximate expression for the signal pro-
duced by the individual spectral components of the white
light (Sect. 3). As for the geometrical effect, our assumptions
are as follows: after self-focusing at a distance zf from the
source, the laser beam gives rise to a filament of length zfil
that spreads out along the first tens or hundreds of metres
and, finally, diverges like a spherical wave (conical emission).
As a first approximation, we consider that this filament is
a cylinder of diameter 2a ∼ 100 µm [9]. On the other hand,
following [15], we assume that, after diverging, the beam ac-
tually becomes a cone with half top angle θCE ∼ 0.1◦. From
the previous hypothesis, we evaluate the factor ξ in the case
where it is solely due to the default of overlap with the view-
ing cone of the detector, neglecting in particular the specific
features coming from the design of the telescope. In our no-
tation, θT represents the half opening angle of the telescope
field of view, and ψ the possible deviation of its axis from the
laser direction. The horizontal separation between both de-
vices is denoted by D (see Fig. 1). In the following, we shall
always suppose that ψ is positive or null (i.e. the telescope
is either parallel to or inclined towards the laser beam), and
that θCE, as well as θT, are (strictly) positive.

In order to evaluate the overall extinction term, we as-
sume that during the back-travel of light, the intensity of the

Fig. 1a,b. Two possible geometries of the relative positions of the telescope
field of view and the laser beam: a the telescope sees only a section of the
filament, as detailed in case (3) in the text; b the telescope intercepts only
a part of the conical emission (case (1) in the text)

beam is sufficiently small so that we can neglect the nonlinear
effects, and consider that only the forward-beam propaga-
tion is submitted to a nonlinear absorption regime resulting
from multi-photon ionisation (which entails extra losses). The
corresponding term in the local energy balance equation is
proportional to a certain power n > 1 of intensity I , thus de-
pending on the cross-section (and therefore the shape) of the
beam. Notice that the pulse attenuation due to other mechan-
isms such as spectral broadening are neglected here. This is
supported notably by spectral measurements of the supercon-
tinuum [8], which exhibit no significant energy loss caused by
the continuum-generation process, and show a steep decrease
of the spectrum on both sides of the fundamental wavelength.

1 Geometrical effects

We first consider the fact that nonlinearity gives rise to
a change in the shape of the laser beam, which leads to a mod-
ification in the overlap function ξ . It is easy to convince
oneself that this represents merely the fraction of the beam
cross-section, with radius RL(z) at a distance z, intersecting
the viewing cone of the telescope. Provided ψ does not ex-
ceed a few degrees, the horizontal section of the viewing cone
is nearly circular, with radius RT, and the problem amounts
to computing the overlap area A(RL, RT, d) of two copla-
nar disks, with radii RL and RT, having their centres located
at a distance d from each other (as represented in Fig. 2). If
(RL + RT) ≤ d, the disks have at most one point in common
and A(RL, RT, d) reduces to zero. As soon as the circles are
secant, A(RL, RT, d) is given by

A(RL, RT, d)= f(RL, RT, d)

≡ RL
2 arccos

(
aL

RL

)
−aL

√
RL

2 −aL
2

+ RT
2 arccos

(
aT

RT

)
−aT

√
RT

2 −aT
2 , (2)

where the auxiliary length aL = (d2 + RL
2 − RT

2)/(2d) mea-
sures the algebraic distance between the centre of the first
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Fig. 2. Two secant circles with radii RL, RT; aL and aT are the same dis-
tances as defined in the text; the central overlap region is split into two
parts by the string joining the intersecting points; the arrows indicate their
respective areas

circle (with radius RL) and the string joining the two inter-
secting points (see Fig. 2); it is actually a function of the
three variables d, RL and RT. The definition of aT is similar
with the role of RL and RT exchanged, hence aT = d −aL =
(d2 + RT

2 − RL
2)/(2d). Finally, when one of the disks con-

tains the other one, i.e. |RL − RT| ≥ d, then A(RL, RT, d)=
min(πRL

2, πRT
2).

All what we need now for getting ξNL ≡ A(RL, RT, d)/
(πRL

2) is to replace RL, RT and d in the expression of ξNL
by their actual values, in view of the geometrical configu-
ration of our system. Since the angles θT, θCE and ψ have
small values (typically less than a few degrees), it is not worth
working beyond the first order in any of these quantities. We
shall write:

RT ≈ zθT , d ≈ |D− zψ| . (3)

The expression of RL as a function of z depends on whether
z ≤ zf, zf ≤ z ≤ zfil or zfil ≤ z (three segments). The shortest
distances are of little interest in lidar measurements; more-
over, in this range, the geometry of the telescope has a strong
influence on the overlap function. Hence, we will not con-
sider them in the following, and assume that ξNL(z)= 0 for
z ≤ zf. Moreover, the radius a of the filament is indeed much
smaller than the length z0 = zf + zfil and can be taken to be
zero. Therefore, RL = a ≈ 0 in the filament (z ≤ z0). Above
it, RL ≈ (z − z0)θCE. Now, the function f can be viewed
as a function of z only, and more precisely we shall define
f̃ (z)= f((z − z0)θCE, zθT, |D− zψ|).

Like the radius RL, the overlap function has to be derived
by segment. In the filament, it is convenient to define two par-
ticular distances zf in = D/(ψ+ θT) and zf out = D/(ψ− θT),
where the filament enters and exits the viewing cone of
the telescope (see Fig. 1). Clearly, those distances can have
a meaning only if they are below the end of the filament,
i.e.provided zf in ≤ zf out ≤ z0. Then, in the altitude range cor-

responding to the filament, we have ξNL(z)= 1 for zf in ≤ z ≤
max(zf out, z0) and ξNL(z)= 0 everywhere else. After the con-
ical emission (z ≥ z0), more geometrical combinations can
occur, leading to more cases.

To go further in the study of these different cases, we in-
troduce the altitudes of the four intersection points between
the conical emission and the viewing cone of the telescope, as
shown in Fig. 1: z1 = (D+ z0θCE)/(ψ+θT +θCE), z2 = (D−
z0θCE)/(ψ+θT −θCE), z3 = (D+ z0θCE)/(ψ−θT +θCE) and
z4 = (D − z0θCE)/(ψ− θT − θCE). Again, those definitions
only make sense when the corresponding points are above z0.
Values less than z0 lead to no crossing points. In that case,
they can be cast to +∞ for our discussion.

We have to distinguish between three cases.

1. If z1 ≥ z0 (or equivalently if zf in ≥ z0) then the field of
view of the telescope intersects only with the conical
emission; it is always the case for linear lidar, where re-
sults can be obtained from the above discussion by choos-
ing z0 = 0.

(a) under (z ≤ z1) or above (z ≥ z4 ≥ z0) the field of view
of the telescope, we have ξNL(z)= 0;

(b) if z0 ≤ z2 ≤ z ≤ z3, the laser beam is included in the
field of view of the telescope and ξNL(z)= 1;

(c) if z0 ≤ z3 ≤ z ≤ z2, then the field of view of the tele-
scope is included in the laser beam, so that ξNL(z)=
[zθT/((z − z0)θCE)]2;

(d) everywhere else, i.e. for z1 ≤ z ≤ min(z2, z3) or for
max(z2, z3) ≤ z ≤ z4 (remember that z4 is taken to be
+∞ if z4 ≤ z0), the two cones cross each other; hence
ξNL(z)= f̃ (z).

2. If zf in ≤ z0 ≤ zf out (which implies that z1 ≤ z0), then the
field of view of the telescope includes the point O where
the beam starts diverging. In this second case:

(a) under (z ≤ zf in) or above (z ≥ z4 ≥ z0) the field of view
of the telescope, we have ξNL(z)= 0;

(b) if zf in ≤ z ≤ min(z2, z3), the laser beam is included in
the field of view of the telescope and ξNL(z)= 1;

(c) Above max(z2, z3) ≥ z0, the field of view of the tele-
scope remains inside the laser beam and ξNL(z) =
[zθT/((z − z0)θCE)]2;

(d) If min(z2, z3) ≤ z ≤ min(max(z2, z3), z4), then the
overlap function is given by ξNL(z)= f̃ (z);

In the two latter cases, one has again to keep in mind the
convention that any zi smaller than z0 must equal +∞.

3. If zf in ≤ zf out ≤ z0, the viewing cone completely crosses
the filament under the point O. However, it may intersect
afterwards with the conical emission, provided z4 ≥ z0.
Again, four sub-cases have to be distinguished:

(a) under the intersection with the field of view of the
telescope (z ≤ zf in) and over this intersection up to
the possible intersection with the conical emission
(zf out ≤ z ≤ z4), we have ξNL(z)= 0;

(b) in the section of the filament that is intercepted by
the telescope field of view (zf in ≤ z ≤ zf out), we have
ξNL(z)= 1;

(c) for z ≥ z2 ≥ z0, the field of view of the telescope
completely enters the conical emission and ξNL(z) =
[zθT/((z − z0)θCE)]2;
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Distance (m)

Fig. 3. Overlap function ξNL(z) (thick points) in the case where the view-
ing cone contains a part of the filament and the whole conical emission;
D = 0.33 m; zf = 1.00 m; zfil = 100 m; ψ = 1×10−3; θT = 2.5×10−3;
θCE = 1×10−3. Compare to the standard situation for z0 = 0 m (crosses)

(d) for z4 ≤ z ≤ z2 (with, again, z2 equal to +∞ if z2 <
z0), the field of view of the telescope intersects the
conical emission, hence ξNL(z)= f̃ (z).

The complication of the result is only apparent, and comes
from the high number of geometrical configurations occur-
ring in each case, according to the relative values of the var-
ious angles. However, given a specific set of parameters, the
function ξNL(z) takes a very simple form. Note that when the
cone of view contains a part of the filament as well as the
whole conical emission, ξNL(z) jumps abruptly from 0 to 1,
and then remains constant (see the ‘step’ in Fig. 3). This leads
to a much simpler overlap function than for the linear case,
where ξNL(z) rises more slowly from 0 to 1. However, when
the cone of view of the telescope intersects with the laser
beam above the filament, the geometrical term becomes quite
similar to that of the linear case, with only an offset z0 in the
distance z and both expressions even coincide for z0 = 0. In
this respect, all the nonlinear effects arise through the filament
length, which is actually an implicit (unspecified) function of
initial intensity z0 = z0(I0); z0(I0) goes to zero when I0 be-
comes small enough, since we must then come back to the
linear regime.

2 Effect of the nonlinear absorption

Apart from modifying the overlap function ξNL, as already
mentioned, the main nonlinear corrections to the lidar equa-
tion affect the exponential extinction factor in (1). Indeed,
during the forward travel when the intensity is extremely
high, a part of the energy of the laser pulse is used to ionise
the atmosphere, and the absorption due to multi-photon ion-
isation losses adds up to the usual linear (Mie and Raleigh)
scattering. If n represents the number of photons that are ne-
cessary to ionise one molecule, the corresponding intensity
losses (for a plane wave) read(

dI

dz

)
MPI

= αref

(
I

Iref

)n

, (4)

with αref = nhνL Rref N, where hνL is the laser photon energy,
N the ionising molecule density and Rref a reference ioni-
sation rate of the considered species, which has to be deter-
mined experimentally as does the reference intensity Iref [24].
As a matter of fact, the values of n are given by experiment,
and are rather effective values taking all ionisation processes
into account. In particular, tunnel ionisation may lead to frac-
tional values lower than those expected from the ratio of
the ionisation potential to the photon energy. As the num-
ber n differs from one type of ionised molecule to another,
the complete losses are made up of a sum of terms such as
the one given by (4) with various values for αref, Iref and n.
However, provided the intensity remains below 1018 W/m2,
the contribution of oxygen dominates in air [24], so that we
are allowed to keep only one term in the sum as a first ap-
proximation. Higher intensities would moreover produce the
saturation of ionisation and alter (4). Besides, our assumption
leads us to an analytical solution for the intensity, which pro-
vides quite a realistic description of the main changes induced
by nonlinearity.

Now, a laser beam can be seen as a divergent wave, emit-
ted by a fictitious point O in a cone of solid angle Ω. The
energy-density variation in the spherical slice of centre O, ra-
dius r (≈ z in our case) and thickness dr is assumed to be
entirely due to scattering or absorption. We look for I as
a function of r only, hence the balance equation:

I(r +dr) (r +dr)2Ω− I(r)r2Ω =
−α�(r)Ir2drΩ−αref(r)

(
I

Iref

)n

r2drΩ , (5)

where α� denotes the linear scattering coefficient. The dif-
ferential equation obeyed by the intensity function then
reads:

dI

dr
= −2

r
I −α� I −αref

(
I

Iref

)n

, (6)

where we immediately recognise a Bernoulli equation. The
solution is readily obtained by introducing the intermedi-
ate unknown function y(r) = I1−n(r). We find after easy
calculations

I(r)= I0

(r0

r

)2
exp


−

r∫
r0

α�(λ0, r
′)dr ′




×

1 + (n −1)

(
r0

2 I0

Iref

)n−1 r∫
r0

�−2(n−1)
(
αref(�)

Iref

)

× exp


−(n −1)

�∫
r0

α�(λ0, �
′)d�′


 d�




−1/(n−1)

. (7)

The parameter I0 can be interpreted as the intensity of the
beam at a distance r = r0 from the point O. The solution I(r)
behaves as 1/r2 when r goes to zero and, therefore, it repre-
sents the propagation of a spherical wave outward from the
source. The first exponential factor is mainly responsible for
the energy decrease for large values of α� in agreement with



161

the Beer–Lambert law. The new feature comes from the con-
tribution appearing between the square brackets. The second
term inside the brackets represents the correction due to non-
linear absorption during the propagation process. It can be
seen as resulting from the multi-photon ionisation (4) applied
to the linearly attenuated beam. It is of course negligible when
the intensity of the beam I becomes small with respect to the
reference intensity Iref, but at the exit of the laser, we may
have I � Iref if the initial power EL is high enough, so that
the ionisation effect dominates. On the other hand, at short
distance, i.e. for r � 1/α� , the exponential factor modulat-
ing the integrand �−2(n−1)αref(�)/Iref as well as the one of
the Beer–Lambert extinction are close to 1. In summary, we
can distinguish between three different absorption regimes
provided the initial power is sufficient: (i) for r � 1/α� the
absorption is dominated by multi-photon ionisation, (ii) for
r � 1/α� it obeys the Beer–Lambert law, (iii) for r ∼ 1/α�
we have an intermediate regime where the full expression of
the intensity should be used. Note that if we make n for-
mally go to 1 in (7), the bracket tends towards an exponential
function, which is not surprising, since then both energy-
loss terms in the balance equation (5) are proportional to the
intensity.

In the filament, the beam has to be treated as a plane wave
(along the z axis). Starting from the energy-conservation
equation

dI

dz
= −α� I −αref

(
I

Iref

)n

(8)

and following the same method as the one sketched above, we
get the alternative solution, valid for plane propagation:

I(z)= I0 exp


−

z∫
Z0

α�(λ0, z′)dz′




×

1 + (n −1)

(
I0

Iref

)n−1 z∫
Z0

(
αref(ζ)

Iref

)

× exp


−(n −1)

ζ∫
Z0

α�(λ0, ζ
′)dζ ′


 dζ




−1/(n−1)

. (9)

There are only a few changes with respect to the spherical-
wave case: the factor 1/r2 has disappeared, and the source
inside the integral over dζ has been modified by removing the
singular factor �−2(n−1) appearing in (7).

Combining both results, we obtain the intensity of the
laser beam inside the filament as well as after the conical
emission. Over the first centimetres or metres of the light
travel, i.e. just before the self-focusing, the power losses are
nearly negligible with respect to the total available energy per
time unit EL; thus, the power at the beginning of the filament
P(zf)≡ πa2 I(zf) is almost equal to EL. Now, the intensity of
the laser as a function of z is given for z ≤ z0 by the rela-
tion (9), where Z0 is taken to be equal to zf in order to have
I0 = EL/(πa2). This leads to a transmission coefficient in the
filament

TNL(λ0, I0, z)= exp


−

z∫
zf

α�(λ0, z′)dz′



×

1 + (n −1)

(
I0

Iref

)n−1 z∫
zf

(
αref(ζ)

Iref

)

× exp


−(n −1)

ζ∫
zf

α�(λ0, ζ
′)dζ ′


 dζ




−1/(n−1)

, (10)

with the restriction z ≤ z0. The intensity near the top of the
emitting cone is then straightforwardly deduced from the
value of the light power at the end of the filament: P(z0) =
πa2 I(z0). If r0 is a small arbitrary length as compared to z0,
say r0 ∼ a/θCE, there is very little absorption or backscatter-
ing between z0 and z0 + r0, and we can write πθCE

2r0
2 I(z0

+r0) ≈ P(z0). As a consequence, we determine the inten-
sity I(z) in the region of the conical emission by substituting
(a/θCE)

2 I(z0) with r0
2 I0 as well as (z − z0) with r in (7).

We must also replace the backscattering coefficient α�(�) by
α�(z0 +�) (and the same for αref).

I(z)= I0

(
a

θCE(z − z0)

)2

exp


−

z∫
zf

α�(λ0, r)dr




×

1 + (n −1)

(
I0

Iref

)n−1
z0∫

zf

(
αref(�)

Iref

)

× exp


−(n −1)

�∫
zf

α�(λ0, �
′)d�′


 d�

+ (n −1)
(

a2 I0

θCE
2 Iref

)n−1

× exp


−(n −1)

z0∫
zf

α�(λ0, r
′)dr ′




×
z∫

z0+r0

αref(�)

Iref(�− z0)2(n−1)

× exp


−(n −1)

�∫
z0

α�(λ0, �
′)d�′


 d�




−1/(n−1)

.

(11)

The constant r0 has been neglected everywhere except in the
lower bound of the second integral over d�, which happens
to diverge when r0 goes to zero. Such a behaviour is not
surprising, since in the case of a rigorously spherical wave,
the intensity becomes infinite at the origin, which would im-
ply a total nonlinear absorption in the framework of classical
electromagnetism. Of course, this situation is not physical
and, to a certain extent, the filament ‘matches’ the emitting
cone. Setting r0 = a/θCE amounts to imposing the continuity
of the section radius, but this choice is arbitrary. However,
as soon as the diameter of the conical emission is signifi-
cantly larger than that of the filament, the pre-factor of the
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latter integral becomes negligible, and the numerical result
should not be notably modified. Again, the first (exponential)
factor accounts for linear extinction; the second term of the
factor between brackets is associated with the multi-photon
ionisation inside the filament, while the last term describes
the multi-photon ionisation after the conical emission as ob-
tained from (7) and (9). Neglecting the latter contribution, we
define the transmission factor for z ≥ z0 (beyond the conical
emission) as

TNL(λ0, I0, z)≡
(
θCE(z − z0)

a

)2 I(z)

I0

≈ exp


−

z∫
zf

α�(λ0, r)dr





1 + (n −1)

(
I0

Iref

)n−1

×
z0∫

zf

(
αref(�)

Iref

)
exp


−(n −1)

�∫
zf

α�(λ0, �
′)d�′


 d�




−1/(n−1)

.

(12)

To get the nonlinear lidar equation, it only remains to perform
the replacement

exp


−2

z∫
0

α�(λ0, z′)dz′

 →

exp


−

z∫
0

α�(λ0, z′)dz′

 TNL(λ0, I0, z) (13)

in (1), remembering that I0 = EL/(πa2), and using a suitable
overlap factor. We finally arrive at

E(λ0, z)= EL
A0

z2

cτd

2
ξNL(λ0, I0, z)

×β(λ0, z) exp


−

z∫
0

α�(λ0, z′)dz′

 TNL(λ0, I0, z),

(14)

where ξNL is that of Sect. 1 and TNL is given by (10) or (12)
depending on whether zf ≤ z ≤ z0 or z0 ≤ z respectively.

If we compare this nonlinear lidar equation with the lin-
ear one (1), it is clear that the effect of the pulse extinction
due to multi-photon ionisation results in a heavy reduction
(up to several orders of magnitude) of the available power
at the end of the filament. However, in the diverging region,
where the beam section is much larger, multi-photon ionisa-
tion is negligible and, thus, the distance-dependence of the
lidar return is similar to that of the linear case. Of course, in
the extreme situation where the intensity tends to zero, TNL
reduces to the Beer–Lambert absorption coefficient. As we
also have ξNL → ξ in this limit, we recover the linear lidar
equation (1) for small values of I .

3 Multi-spectral lidar signal

Due to spectral broadening resulting from self-phase modula-
tion, a nonlinear lidar offers a unique opportunity to perform

multi-spectral experiments. In this purpose, we shall derive
here the lidar signal produced at a wavelength λ different
from the wavelength λ0 of the laser.

If multiple scattering is neglected, there are two differ-
ent ways for the white light to reach the detector at time
t = 2z/c: (i) a direct backward emission at altitude z, which
may be treated as in [4] (see (5) therein), with TNL given
by (12) above, or (ii) a forward white-light emission at a dis-
tance zem ≤ z, followed by a backscattering at distance z.
Recent measurements [26] suggest that the white-light en-
ergy is negligible outside the conical emission [10, 14, 15],
i.e. we can consider that the white light is emitted forward in
a cone with half top angle θem ≈ θCE. The geometrical factor
ξNL(λ, I0, zem, z) thus has the same form as the one of Sect. 1
in the case z ≥ z0, but the role of z0 is now held by zem.

The white-light intensity travelling in the backward di-
rection is small enough to consider its propagation as linear.
In contrast, nonlinearities may affect the forward propagation
via the influence of the co-propagating pump pulse. In that
case, obtaining an analytical expression of the transmission
factor for the white light is an extremely difficult task, due
to the numerous processes to be taken into account. We shall
neglect all effects of that kind in our simple model. Under
this hypothesis, the extinction of forward-travelling (as well
as backward-travelling) white light is correctly described by
the Beer–Lambert law. If we denote by βfor(λ, λ0, I0, zem) the
conversion coefficient from wavelength λ0 to wavelength λ, at
distance zem from the source with initial intensity I0, the con-
tribution to the intensity dIfor(λ, I0, z) at altitude z generated
on a shell of thickness dzem at altitude zem reads

dIfor(λ, I0, z)= EL βfor(λ, λ0, I0, zem)

× exp


−

z∫
zem

α�(λ, z′)dz′

 TNL(λ, I0, zem)dzem . (15)

Of course, both processes described above occur simultan-
eously so that their contributions add, which leads to

E(λ, I0, z)= EL
A0

z2

cτd

2
exp


−

z∫
0

α�(λ, z′)dz′



×

ξNL(λ, I0, z)βback(λ, λ0, I0, z)+π(θCE)

2β(λ0, I0, z)

×
z∫

0


ξNL(λ, I0, zem, z)βfor(λ, λ0, I0, zem)

× exp


−

z∫
zem

α�(λ, �)d�


 TNL(λ0, I0, zem)


 dzem


 . (16)

Note that the signal E(λ, I0, z) actually represents a spectral
density since [βback] = [βfor] = [β]/[length].

The determination of βback and βfor for white-light gener-
ation as well as their angular dependence is not straightfor-
ward. Spectral broadening depends on several processes such
as plasma ionisation or self-phase modulation. For this rea-
son, the efficiency of the frequency conversion from λ0 to
λ can only be defined under strong assumptions. Moreover,
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recent experimental measurements [5, 6, 25] show inconsis-
tencies about the shape of the white-light spectrum in the
visible domain. This point is beyond the scope of the pa-
per, but it should be clarified before issuing some definite
expression for βfor and βback and obtaining a more explicit
version of (16).

4 Conclusion

Gathering the results for the overlap function and the intensity
attenuation, we finally find the main changes to the lidar equa-
tion implied by nonlinear propagation of high-power ultra-
short laser pulses, for both mono- and multi-spectral lidar
configurations. This propagation entails a modification of the
geometrical factor ξ because of self-focusing and subsequent
filamentation. The high intensities that are reached in the fil-
aments also result in a strongly nonlinear extinction of the
pulses, thus modifying the scattering (α) term. The changes
proposed in this paper can combine with the modifications de-
scribed by Kasparian et al. [4] for the backscattering (β) term.
Actually, such a nonlinear lidar equation is essential for the
interpretation of lidar signals from femtosecond pulses [5, 6],
which could permit a more complete remote sensing of the
atmosphere.
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J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysy-
rowicz, M. Rodriguez, H. Wille, L. Wöste: Opt. Lett. 25, 1397 (2000)

9. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou: Opt. Lett. 20,
73 (1995)

10. E.T.J. Nibbering, P.F. Curley, G. Grillon, B.S. Prade, M.A. Franco,
F. Salin, A. Mysyrowicz: Opt. Lett. 21, 62 (1996)

11. A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G. Koserava, V.P. Kan-
didov: Opt. Lett. 22, 304 (1997)

12. M. Mlejnek, E.M. Wright, J.V. Moloney: Opt. Lett. 23, 382 (1998)
13. B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Despa-

rois, T.W. Johnson, J.-C. Kieffer, H. Pépin, H.P. Mercure: Phys. Plas-
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